应用循环伏安法研究了Pb - 0 .5at %Ca - 1 .5at %Sn和含Ce的Pb - 0 .5at%Ca - 1 .5at%Sn合金电极在 4.5mol·dm- 3H2 SO4溶液中和 0 .6~ 1 .4V(vs .Hg/Hg2 SO4电极 )电位范围内的电化学特性 ,并采用线性电位扫描法和交流伏安法分别研究了上述合金在相同溶液中以 0 .9V(vs .Hg/Hg2 SO4电极 )生长的阳极Pb(Ⅱ )膜增长率和膜的阻抗实数部分 (Z’)变化 .结果表明 ,在铅合金中添加Ce对阳极Pb(Ⅱ )膜的生长有显著的抑制作用并降低铅阳极膜的Z’ .以上述两种合金作为正极板栅制作的铅蓄电池 ,含Ce的Pb Ca Sn合金的深充放循环性能明显优于Pb Ca Sn合金 .
The cyclic voltammograms for Pb - 0.5 at% Ca - 1.5 at% Sn and Pb - 0.5 at% Ca - 1.5 at% Sn containing a certain amount of cerium in 4.5 mol·dm -3 H 2SO 4 at 20℃ were measured between 0.6 V and 1.4 V(vs. Hg/Hg 2SO 4). The growth rate of the anodic Pb(Ⅱ) films formed on the mentioned alloy electrodes at 0.9 V in the same sulfuric acid medium was investigated using the Linear Sweep Voltammetry. The variation with electrode potential of the real part of the impedence (Z’) for the anodic Pb(Ⅱ) films was measured using the A.C. Voltammetry. The experiment results show that the cerium added to Pb Ca Sn alloys may inhibit the growth of the anodic Pb(Ⅱ) film and reduce the resistivity of the anodic Pb(Ⅱ) film. The capacity losses at deep charge/discharge cycles for the lead acid batteries with the positive grids manufactured using the mentioned lead alloys were measured. The results show that the performance of the deep charge/discharge cycles for the grid made of Pb Ca Sn Ce alloy is better than that of Pb Ca Sn alloy.
[1 ] PavlovD .Powersourcesforelectricvehicles[M ].Amsterdam :Elsevier ,1 984:2 2 8~ 2 45 .
[2 ] BialackiJA ,HampsonNA ,WilsonF .PotentiostaticstepexperimentsonpastedPb SbandPb Ca Snelec trodes[J].J .Appl.Electrochem .,1 985 ,1 5 :99.
[3] CuiRL ,WuSG .Leadalloyformaintenance freeandsealedlead/acidbatteries[J].J .PowerSources ,1 993,46 :32 7.
[4 ] MahatoBK ,StrebeJL ,WilkinsonDF ,etal.Effectofantimonyonlead/acidbatterynegative[J].J .Electrochem .Soc .,1 985 ,1 32 :1 9.
[5 ] PavlovD .MechanismofactionofSnonthepassivationphenomenainthelead acidbatterypositiveplate (Sn freeeffect) [J].J .Electrochem .Soc .,1 989,1 36 :2 7.
[6 ] CaillerieJL ,AlbertL .Lead calciumalloydevelopment :qualityimprovement[J].J .PowerSources ,1 997,6 7:2 79.
[7] BuiN ,MattescoP ,SimonP ,etal.Thetineffectinlead calciumalloys[J].J .PowerSources ,1 997,6 7:6 1 .
[8] LiuHT ,YangJ ,LiangHH ,etal.Theeffectsofvarioussulphateadditivesontheperformanceoftheposi tiveelectrodeinlead acidbattery[J].JournalofFudanUniversity (NaturalScience) ,1 999,38:6 2 3.
[9] BagshawNE .Gridalloysformaintenance freedeep cyclingbatteries[J].J .PowerSources ,1 991 ,33:3.
[1 0 ] LiuHT ,WangFW ,XuPD ,etal.Anodiccorrosionbehavioroflead strontiumalloysinsulfuricacidsolu tion[J].JournalofFudanUniversity (NaturalScience) ,1 995 ,34:2 6 .
[1 1 ] MaoGW ,WilsonTL ,LarsonJG .Lithium leadalloysasgridmaterialforlead acidbatteries[J].J .Elec trochem .Soc .,1 970 ,1 1 7:1 32 3.
[1 2 ] WenHQ ,ShengFC ,SuWD ,ZhouSM .Astudyoftheelectrochemicalpropertiesoflead strontiumal loysforlead/acidbatteries[J].J .PowerSources ,1 991 ,33:2 1 .
[1 3] HanJ ,PuC ,ZhouWF .Determinationofthephasecompositionofanodiclead(Ⅱ )formedinsulfuricacidsolution[J].J .Electroanal.Chem .,1 994,36 8(1 ) :43.
[1 4] LiuHT ,XuPD ,ZhouWF .Effectofcorrosionperformanceoflow antimonyleadalloysoncyclelifeoflead acidbattery[J].ChineseJournalofAppliedChemistry ,1 991 ,8(4) :6 0 .
[1 5 ] PavlovD .Powersourcesforelectricvehicles[M ].Amsterdam :Elsevier ,1 984 :2 5 4.