应用循环伏安法和双电位阶跃法研究了不同浓度硫酸中钼酸盐在多晶铂电极上的电化学行为 .在硫酸溶液中 ,当电位负向扫描时 ,钼酸盐即于铂电极上还原形成钼青铜 ,吸附在电极表面 ;电位正向扫描时钼青铜将再被氧化 ,氧化机理受硫酸浓度的影响 .铂电极因钼酸盐的还原和钼青铜的氧化而得到修饰 .在硫酸钠溶液中以此修饰的铂电极对甲酸氧化有明显的催化作用 ,其氧化峰电流接近未修饰铂电极上的 2倍 .钼青铜对铂的不完全修饰或过分修饰均会减弱甲酸氧化的催化作用
关键词:
铂; 钼青铜; 修饰; 甲酸; 催化氧化
The electrochemical behavior of molybdates on a platinum electrode in H 2SO 4 solutions with different H 2SO 4 concentrations was studied by cyclic voltammetry and double chronoamperometry. Molybdates were reduced to adsorb hydrogen molybdenum bronzes on the platinum electrode in H 2SO 4 solutions during cathodically potential sweep. The hydrogen molybdenum bronzes were oxidized to different forms of hydrogen molybdenum bronzes with less hydrogen, depending on the H 2SO 4 concentration. Platinum electrode was modified by these hydrogen molybdenum bronzes. However, this modified electrode was not stable in H 2SO 4 solutions. The modified electrode was used to study the oxidation of formic acid in Na 2SO 4 solutions.It was shown that there was a strong catalysis on the oxidation of formic acid on the modified electrode. The peak current of formic acid on the modified electrode was about two times that on unmodified electrode. It was also found that the catalysis was weakened when the platinum elecdtrode was under-or over-modified.
[1] LamyC .Electrocatalyticoxidationoforganiccompoundsonnoblemetalsinaqueoussolution[J].Electrochim icaActa,1984,29(11):1581~1588.
[2] WatanabeM ,UchidaM ,MotooS .Applicationofthegasdiffusionelectrodetoabachwardfeedandexhaust(bfe)typemethanolanode[J].J .Electroananl.Chem.,1986,199:311~322.
[3] ApplebyAJ .Theenergycrisis:Theelectrochemicalviewpoint.J.Electroanal.Chem.,1981,118:31~50.
[4] SrinivasaS .Fuelcellforelectricutilityandtransportationapplication[J].J.Electroanal.Chem.,1981,118:51~69.
[5] WatanabeM ,FuruuchiY ,MotooS .Electrocatalysisbyad_atoms.PartXIII Preparationofad_electrodeswithtinad_atomsformethanol,formaldehydeandformicacidfuelcells[J].J .Electroanal.Chem.,1985,191:367.
[6] ParsonsR ,T .VanderNoot.Theoxidationofsmallorganicmolecules:Asurveyofrecentfuelcellrelatedre search[J].J .Electroanal.Chem.,1988,257:9~45.
[7] HogarthMP ,HardsGA .Directmethanolfuelcells[J].PlatinumMetalsRev.,1996,40(4):150~1591.
[8] YangH ,LuTH ,XueKH ,etal.Electrocatalyticoxidationofmethanolonpolypyrrolefilmmodifiedwithplatinummicroparticals[J].J.Electrochem.Soc.,1997,144(7):2302~2306.
[9] McnicolBD ,RandDAJ ,WilliamsKR .Directmethanol_airfuelcellsforroadtransportation[J].J .PowerSource,1999,83:15~31.
[10] BaldaufM ,PreidelW .Statusofthedevelopmentofadirectmethanolfuelcell[J].J .PowerSource,1999,84:161~166.
[11] SattlerG .Fuelcellsgoingon_board[J].J .PowerSource,2000,86:61~67.
[12] CollinsGCS ,SchiffrinDJ .Theelectrochromicpropertiesoflutetiumandotherphthalocyanines[J].J .Electroanal.Chem.,1982,139:335~369.
[13] LiCP ,HerculesDM .Asurfacespectrocopicstudyofsulfidedmolybdena_aluminacatalysis[J].J .Phys.Chem.,1984,88:456~464.
[14] KumagaiN ,KumagaiN ,TannoK .Electrochemicalcharacteristicsandstructuralchangesofmolybdenumtri oxidehydratesascathodematerialsforLithiumbatteries[J].J .Appl.Electrochem.,1988,18(6):857~862.
[15] ZhangHQ ,WangY ,FachinER ,etal.Electrochemicallycodepositedplatinum/molybdenumoxideelec trodeforcatalyticoxidationofmethanolinacidsolution[J].ElectrochemicalandSolid_StateLetters,1999,2(9):437~439.
[16] TIANLi_peng,LIWei_shan.Electrocheicalbehaviorofmolybdateanditscatalysisonthemethanoloxida tion[J].J .PowerSources(inChinese),2001,25(2):72~74.
[17] TIANLi_peng,LIWei_shan,LIHong.CatalyticoxidationofmethanolonPt/HxMoO4 electrode[J].FineChemicals(inChinese),2000,17:107~110.
[18] BardAJ ,FaulknerLR .ElectrochemicalMethods[M ].NewYork:JohnWiley&Sons,1980.540.
[19] BardAJ ,ParsonaR ,JordanJ .StandardPotentialsinAqueousSolution[M ].NewYork:1985.462.
[20] CAOXi_zhang,ZHANGWan_hui,DURao_guo,etal.InorganimChemistry.Shanghai:EducationPress,1984.425.
[21] LiWS ,TianLP ,HuangQM ,etal.Catalyticoxidationofmethanolonmolybdate_modifiedplatinumelec trodeinsulfuricacidsolution[J].J.PowerSource(inChinese),2002,104:281~288.