欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

硫酸溶液中Pt电极表面过程的EQCM研究

  • 林珩 ,
  • 陈声培 ,
  • 林进妹 ,
  • 林爱兰 ,
  • 陈国良
展开
  • 漳州师范学院化学系,厦门大学化学系固体表面物理化学国家重点实验室,漳州师范学院化学系,漳州师范学院化学系,漳州师范学院化学系 福建漳州363000 ,福建厦门361005 ,福建漳州363000 ,福建漳州363000 ,福建漳州363000

收稿日期: 2003-02-28

  修回日期: 2003-02-28

  网络出版日期: 2003-02-28

An EQCM Study of Water Adsorption and Oxidation on Pt Electrodes in Sulfate Acid Sulotions

  • LIN Heng ,
  • CHEN Sheng_pei ,
  • LIN Jin_mei ,
  • LIN Ai_lan ,
  • CHEN Guo_liang
Expand
  • (1.Department of Chemistry,Zhangzhou Normal College,Zhangzhou 363000,China,of Chemistry,Xiamen University,Xiamen 361005, China)

Received date: 2003-02-28

  Revised date: 2003-02-28

  Online published: 2003-02-28

摘要

应用电化学循环伏安和石英晶体微天平(EQCM)方法研究了0.1mol·L-1硫酸溶液中Pt电极表面的吸附和氧化过程.从电极表面质量变化的结果分析,可认为正向电位扫描时氢区表面质量的增加是由于水分子取代Had引起的,而双电层区的质量增加则是由于水的吸附模式逐渐由氢端吸附转向氧端吸附所致.根据频率变化和电量数据,进一步推算出水在双电层区是以低放电吸附形式出现的,1molPt原子和水分子只发生0.054mol的电荷转移.本文结果可为认识Pt电极表面过程提供定量的新数据.

本文引用格式

林珩 , 陈声培 , 林进妹 , 林爱兰 , 陈国良 . 硫酸溶液中Pt电极表面过程的EQCM研究[J]. 电化学, 2003 , 9(1) : 47 -53 . DOI: 10.61558/2993-074X.1483

Abstract

Simultaneous frequency and current responses during potential cycling of Pt electrode were measured in 0.1 mol·L-1 H2SO4 solution by using EQCM.Quantitative analysis of the mass change revealed that the increase of mass in the hydrogen and double_layer regions in a positive_going potential scan was due to water adsorption on the Pt electrode,further calculation indicated that water molecules adsorbed on Pt electrode in the double_layer regions through a low discharge quomodo .The EQCM studies provided quantitative results of surface mass variation during water adsorption and oxidation,and have thrown new light in elucidating the structure of double_layer between electrode and solution.

参考文献

[1] ZHANGJiu-Jun(张久俊),LUJun-Tao(陆君涛),FENGZi-Gang(冯子刚),etal.Anin-situFTIRre-flection-absorptionspectroscopicstudyofwateronandnearPtelectrodesurface[J].ActaPhysico-chmicaSinica(物理化学学报),1990,6:318~32. [2] ToneyMF,HowardJH,RicherJ.Voltage-dependentorderingofwater-moleculesatanelectrode-elec-trolyteinterface[J].Nature,1994,368:44~49. [3] ShimazuK,KitaHJ.In-situmeasurementsofwater-adsorptiononaplatinum-electrodebyanelectro-chemicalquartzcrystalmicrobalance[J].J.Electroanal.Chem.,1992,341:361~369. [4] VisscherW,GootzenJFE,CoxAP.ElectrochemicalquartzcrystalmicrobalancemeasurementsofCOadsorptionandoxidationonPtinvariouselectrolytes[J].ElectrochimicaActa,1998,43:533~539. [5] IwasitaK,XiaXH.AdsorptionofwateratPt(111)electrodeinHClO4solutions.Thepotentialofzerocharge[J].J.Electroanal.Chem.,1996,411:95~103. [6] ShimazuK,KitaH.Insitumeasurementsofwateradsorptiononaplatinumelectrodebyanelectro-chemicalquartzcrystalmicrobalance[J].J.Electroanal.Chem.,1992,341:361~367. [7] WatanabeM,UchidaH,IkedaN.Electrochemicalquartz-crystalmicrobalancestudyofcopperad-atomsongoldandplatinum-electrodes.1.Adsorptionofanionsinsulfuric-acid[J].J.Electroanal.Chem.,1995,380:255~261. [8] GloaguenF,LegerJM,LamyC.AnelectrochemicalquartzcrystalmicrobalancestudyofthehydrogenunderpotentialdepositionataPtelectrode[J].J.Electroanal.Chem.,1999,467:186~192. [9] BruckensteinS,ShayM.Experimentalaspectsofuseofthequartzcrystalmicrobalanceinsolution[J].Electrochim.Acta,1985,30:1295~1301. [10] JerkiewiczG,ZolfaghariA.Comparisonofhydrogenelectroadsorptionfromtheelectrolytewithhy-drogenadsorptionfromthegasphase[J].J.Electrochem.Soc.,1996,143:1240~1249.
文章导航

/