欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

用于预测高温高浓度溴化锂溶液中碳钢腐蚀行为的BP神经网络(英文)

  • 黄乃宝 ,
  • 梁成浩
展开
  • 大连理工大学化工学院,大连理工大学化工学院 辽宁大连116012 ,辽宁大连116012

收稿日期: 2003-05-28

  修回日期: 2003-05-28

  网络出版日期: 2003-05-28

Corrosion Prediction of Carbon Steel in Concentrated Lithium Bromide Solutions at High Temperature Using BP Neural Network

  • HUANG Nai_bao ,
  • LIANG Cheng_hao
Expand
  • (School of Chemical Engineering,Dalian University of Technology,Dalian 116012,China)

Received date: 2003-05-28

  Revised date: 2003-05-28

  Online published: 2003-05-28

摘要

本文建立了预测碳钢在LiBr溶液中腐蚀速率的神经网络模型.该模型拟合了碱度,温度,LiBr和Na2MoO4浓度变化对碳钢全面腐蚀速率的影响,可用于准确预测不同温度下,在含有不同缓蚀剂的LiBr溶液中的碳钢腐蚀速率,其预测值和实验值完全吻合,为研究溴冷机中金属材料的腐蚀和现场监测提供了新的思路和方法.

关键词: 腐蚀; 碳钢; LiBr; BP神经网络

本文引用格式

黄乃宝 , 梁成浩 . 用于预测高温高浓度溴化锂溶液中碳钢腐蚀行为的BP神经网络(英文)[J]. 电化学, 2003 , 9(2) : 228 -234 . DOI: 10.61558/2993-074X.1510

Abstract

Neutral network model has been developed for the computation of corrosion rate of carbon steel in LiBr solutions.The results indicate that the model is capable of reproducing the effects of changes in alkalinity,temperatures,LiBr and Na2MoO4 concentrations on the rates of general corrsion and good agreement between calculated and experimental corrosion rate is obtained.The model can be used to satisfactorily predict the corrosion rate of carbon steel in different concentrations of LiBr solutions containing different inhibitors at different temperatures.It also provides a novel method for corrosion monitoring of metals used in LiBr absorption chiller.

参考文献

[1] KazuoTanno,ShiroSaaito,MasahikoIto,etal.Corrosioninhibitionofcarbonsteel,copperand70/30cupro_nickelbybenzotriazoleinconcentratedlithiumbromidesolutionatelevatedtemperature[J].BoshokuGijtsu,1984,33:516~519. [2] MasahikoItoh,AkiraMinato,MichihikoAizawa,etal.Corrosioninhibitionofcarbonsteelandcupro_nickelbylithiummolybdateinconcentratedlithiumbromidesolutionatelevatedtemperature[J].BoshokuGijtsu,1984,33:504~508. [3] TannoK,ItohM,TakahashiT,etal.Thecorrosionofcarbonsteelinlithiumbromidesolutionatmoderatetemperatures[J].CorrosionScience,1993,34(9):1441~1451. [4] TannoK,M.ItonM,HekiyaH,etal.Thecorrosioninhibitionofcarbonsteelinlithiumbromidesolutionbyhydroxideandmolybdateatmoderatetemperatures[J].CorrosionScience,1993,34(9):1453~1461. [5] HitoshiYashiro,AkijikoSai,NaoakiKumagai,etal.CorrosionbehaviorofcarbonsteelinconcentratedLiBrsolutionsupto473K[J].Zairoy_to_Kankoy,1999..48(6):369~374. [6] GuoJian_wei,LiangCheng_hao.Mechanismoftheformationofpassivestatefilmsoncarbonsteelinahightemperatureandhighconcentrationlithiumbromidesolution[J].MaterialsScienceandTechnology(inChinese),2001,9(4):413~416.. [7] GuoJian_wei,LiangCheng_hao.Corrosionbehaviorofcarbonsteelinhightemperatureandhighconcentrationlithiumbromidesolution[J].J.ofDalianUniversityofTechnology(inChinese),2000,40(5):554~556. [8] GuoJian_wei.Researchofinhibitionmechanismonabsorptionlithiumbromiderefrigerator[D].Dalian:DalianUniversityofTechnology,2000. [9] Chun_genYin,Zhong_yangLuo,MingjiangNi,etal.Predictingcoalashfusiontemperaturewithaback_propagationneuralnetworkmodel[J].Fuel,1998,77(15):1777~1782. [10] SmetsHMG,BogaertsWFL.SCCanalysisofaustieniticstainlessinchloride_bearingwaterbyneuralnetworktechniques[J].Corrosion,1992,48(8):618~623. [11] RosenEM,SilvermanDL.Corrosionpredictionfrompolarizationscansusinganartificialneuralnetworkintegratedwithanexpertsystem[J].Corrosion,1992,48(9):734~744. [12] TrasattiSP,MazzaF.Crevicecorrosion,aneuralnetworkapproach[J].BritishCorrosionJournal,1996,31(2):105~112. [13] HoskinsJC,HimmelblauDM.Processcontrolviaartificialneuralnetworksandreinforcementlearning[J].Comput.Chem.Eng.,1992,16(4)141~151. [14] MirchadaniG,CaoW.Onhiddenunitsinneuralnets[J].IEEETransCircuitsSyst,1989,36(15):661~664.
文章导航

/