通过循环伏安法、交流阻抗法研究了二乙基二硫代氨基甲酸钠(以D表示)与脆硫锑铅矿的相互作用.在不同的电位条件下呈现出不同的电极过程.从-178~472mV(相对于标准氢电极),脆硫锑铅矿表面主要是DDTC,PbD2,S0等疏水性物质的吸附,界面电容也比较小.当电极电位高于472mV时,由于PbD2,S0等疏水性物质被氧化成Pb2+,SO32-,SO42-,PbSO4等亲水性产物,脆硫锑铅矿表面是亲水的.由此推测用DDTC做捕收剂浮选脆硫锑铅矿的电位范围为-178~472mV,最佳电位范围为60~222mV.
The interactions of jamesonite with diethyl dithiocarbamate (DDTC) were studied by AC impedance measurement and cyclic voltammetry. Several electrode processes under different potential conditions were observed. There mainly is the absorption of hydrophobic DDTC. PbD_2, S~0 etc on the surface of jamesonite mineral from -178 mV to 472 mV (vs. SHE) and the interfacial capacitance also is small. When the electrode potential is over 472 mV, the surface of jamesonite mineral is of hydrophilicity due to the fact that hydrophobic PbD_2,S~0 etc are oxidized into hydrophilic products such as Pb~(2+), SO_3~(2-) ,SO_4~(2-), PbSO_4. So it was deduced that the potential range of jamesonite flotation using diethyl dithiocarbmate as a collector is from -178 mV to 472 mV, and its optimum potential range is between 122 mV and 222 mv due to the passive action by the hydrophobic species.
[1] BuckleyAN,WoodsR.Underpotentialdepositionofdithiophosphateonchalcocite[J].J.Electroanal.Chem.,1993,357:387~450.
[2] BuckleyAN,WoodsR.IdentifyingchemisoptionintheinteractionofthiocollectorswithsulfidemineralsbyXPS:adsorptionofxanthateonsilverandsilvesulfide[J].ColloidsSurf.,1995,104:295~305.
[3] BuckleyAN,WoodsR.Chemisorptionthethermodynamicallyfavoredprocessintheinteractionofthiocollectorswithsulfideminerals[J].Int.J.Miner.Process,1997,51:15~26.
[4] ChengYufeng,DuYuanlaong,CaoChunan.Inhibitionandadsorption/desorptionofcyclohexylaminephosphateinNa2SO4solution[J].TheJournalofChineseSocietyforCorrosionandProtection,1997,17(2):142~145.
[5] FuerstenauMC,MillerJD,KuhnMC.ChemistryofFlotation[M].NewYork:Am.Inst.Min.Metall.Pet.Eng.,1985.
[6] GuGuo-hua,HuYue hua,QiuGuan zhou,etal.Electrochemistryofgalenainhighalkalineflotation[J].MiningandMetallurgicalEngineering,2002,221(1):52~55.
[7] HamiltonIC,WoodsR.AVoltammetricStrdyoftheSurfaceOxidationofSaulfideMinerals.In:FlotationofSulfideMinerals[M].Elsevier:Forssberg,K.S.E.(Editor),1985.259~285.
[8] JiangHao,HuYuehua,XuJing.Electrochemicalcharacteristicsofcoupleelectrodeofgalena pyriteindifferentsolution[J].Trans.NonferrousMet.Soc.,2000,10:87~89(inchinese).
[9] QinWenqing.Electrochemicalbehaviorsofsulfidemineralparticlesandpotential controlledfoltationtechnology[D].Changsha:DoctorThesisofCentralSouthUniversity,1997,32.
[10] ShiMeilen.PrincipleandApplicationofACImpedanceSpectra[M].Beijing:Nation defenseIndustrialPress,2001.307~348.
[11] VaughanDJ,BeckerU,wrightK.Sulfidemineralsurfaces:theoryandexperiment[J].InternationalJournalofMineralProcessing,1997,51:1~14.
[12] WangDianzuo.NewDevelopmentinFoltationTheory[M].Beijing:SciencePress,1992.
[13] WangDianzuo,HuYuehua.SolutionChemistryofFoltation[M].Changsha:HunanScienceandTechnologyPress,1989.274~330.
[14] WoodR.ChemisorptionofThiolsonMetalSulfides.In:Bockris,J.O.M.,Conway,B.E.,White,R.E.(Eds.)ModernAspectsofElectrochemistry,Vol.29[M].NewYonk:PlenumPress,1997.401~453.
[15] WuYinxun.TheTechnologyofACImpedance.In:CorrosiveTrailMethodsandAnticorrosiveTestTechnology[M].Beijing:ChemicalIndustryPress,1995.
[16] YangHuaiyu,ChenJiajian,CaoChulan.StudyoncorrosionandinhibitionmechanisminH2Saqueoussolution[J].JournalofChineseSocietyforCorrosionandProtection,2000,20(1):8~14.
[17] Zhouzhongbei,ChenYongyan(Eds.).BasicTheoryandPrinciplesofElectrodeProcessKinetics[M].Wuhan:WuhanUniversityPress,1987.252~307.