欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Pt在多晶Au微盘电极上电沉积成核与晶体生长

  • 陶芝勇 ,
  • 刘佩芳
展开
  • 武汉大学化学与分子科学学院,武汉大学化学与分子科学学院 湖北武汉430072 ,湖北武汉430072

收稿日期: 2004-08-28

  修回日期: 2004-08-28

  网络出版日期: 2004-08-28

Nucleation and Crystal Growth of Pt Electrodeposition on Poly Crystal Au Microdisc Electrode

  • TAO Zhi-yong ,
  • LIU Pei-fang~
Expand
  • (*) (College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China

Received date: 2004-08-28

  Revised date: 2004-08-28

  Online published: 2004-08-28

摘要

于不同H2PtCl6浓度和超电势下,应用Fleischmann的电结晶成核及晶体生长模型和Barradas Bosco的电化学成相吸附成核模型,拟合多晶Au微盘电极( =30μm)上电沉积Pt的恒电势阶跃电流暂态曲线.得出:在稀H2PtCl6溶液中,上述沉积过程初期,发生H2PtCl6吸附并遵循二维瞬时成核与圆柱形生长模型.二维生长速率常数随超电势线性增加.跟随其后的是核的层状生长,其速率常数随超电势呈非线性变化.而在高浓H2PtCl溶液中,沉积机理转变为H2PtCl6的吸附、瞬时成核及三维正圆锥形的生长模式.其晶核的垂直生长速率常数kPERP比水平生长速率常数kPARA大两个数量级以上.况且,logkPERP随超电势线性增加,而logkPARA则随超电势呈反S形变化的关系.相同超电势下,无论kPERP还是kPARA,均比稀H2PtCl6溶液中的二维层状生长速率常数大几个数量级.

本文引用格式

陶芝勇 , 刘佩芳 . Pt在多晶Au微盘电极上电沉积成核与晶体生长[J]. 电化学, 2004 , 10(3) : 279 -286 . DOI: 10.61558/2993-074X.1575

Abstract

Based on the Fleischmann's model of nucleation and crystal growth for electrodeposition combined with the Barradas-Bosco's adsorption-nucleation model for electrochemical phase formation, the chronoamperometry was well fitted for Pt deposition on polycrystalline Au micro disc electrodes (30 μm in diameter) in different H_(2)PtCl_(6) concentrations at different over-potentials. The initial stage of Pt deposition in dilute H_(2)PtCl_(6) could be interpreted by the model of H_(2)PtCl_(6 ) adsorption combined with instantaneous nucleation and two-dimensional cylindrical growth. The rate constant of the two-dimensional growth increased linearly with overpotential. Then the deposit grew layer by layer and the rate constant increased non-linearly with overpotential. In contrast to the situation in dilute solutions, Pt deposition in higher H_(2)PtCl_(6) concentrations was found to follow the mechanism of adsorption-instantaneous nucleation and three-dimensional cone growth.The rate constant of perpendicular growth (k_(perp)) appeared two orders of magnitude larger than that of parallel growth (k_(para))_( )and increased linearly with overpotential. However, the k_(para) increased with overpotential in S shape. Both k_(perp) or k_(para) in concentrated solutions were larger than the growth rate constant in dilute solutions.
文章导航

/