欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

电化学制备P型硅基二维光子晶体优化参数

  • 张晚云 ,
  • 季家榕 ,
  • 袁晓东 ,
  • 叶卫民 ,
  • 朱志宏
展开
  • 国防科技大学光子/声子晶体研究中心,国防科技大学光子/声子晶体研究中心,国防科技大学光子/声子晶体研究中心,国防科技大学光子/声子晶体研究中心,国防科技大学光子/声子晶体研究中心 湖南长沙410073,湖南长沙410073,湖南长沙410073,湖南长沙410073,湖南长沙410073

收稿日期: 2005-11-28

  修回日期: 2005-11-28

  网络出版日期: 2005-11-28

Optimized Parameters for Electrochemical Fabrication of P-type Silicon-Based Two-dimensional Photonic Crystals

  • ZHANG Wan-yun~ ,
  • JI Jia-rong ,
  • YUAN Xiao-dong ,
  • YE Wei-min ,
  • ZHU Zhi-hong
Expand
  • (Research Center of Photon and Phonon,National Univ.of Defense Technology,Changsha 410073,China

Received date: 2005-11-28

  Revised date: 2005-11-28

  Online published: 2005-11-28

摘要

利用光刻技术与碱性腐蚀等工艺预写晶格图样,采用电化学腐蚀方法在P〈100〉型硅基底制备二维大孔硅光子禁带结构.结果表明:在预写有晶格图样的P〈100〉型硅基底上由电化学阳极氧化制备的二维大孔硅,其孔洞的生长速率、深宽比及表/侧面形貌与电解质配比方案及阳极电流密度均密切相关.在优化的电化学工艺参数下得到的空气洞阵列,具有近乎完美的二维四方晶格,晶格常数为3.8μm,孔洞直径约3.0μm,孔洞深宽约90μm,深宽比达30.该方法可用于制备在中红外或近红外波段具有完全二维光子带隙的光子晶体.

本文引用格式

张晚云 , 季家榕 , 袁晓东 , 叶卫民 , 朱志宏 . 电化学制备P型硅基二维光子晶体优化参数[J]. 电化学, 2005 , 11(4) : 377 -381 . DOI: 10.61558/2993-074X.1671

Abstract

A two-dimensional photonic band structure based on macroporous silicon with a gap centered at 20μm has been achieved for the first time.A medium doped p-type(100) silicon substrate was patterned by the standard photolithograpgy and alkaline efthing.And this pre-patterned sample was then etched 90 μm deep by electrochemical pore formation in the mixture of hydrofluoric-acid and dimethylformamide(DMF) to produce a quare lattice of circular air rods with a lattice constant of 3.8 μm and the very high aspect ratio up to 30.The optimized electrochemical parameters such as eletrolytical components and the current density were 5 % HF(by mass)+7 % H_(2)O(by mass)+DMF and 12 mA/cm~(2) respectively.the pore formation technique should allow the fabrication of photonic lattices with a complete two-dimensional photonic band gap in the middle and near infrared.

参考文献

[1]Yab lonovitch E.Inh ib ited spontaneous em ission in solidstate physics and electron ics[J].Phys.Rev.Lett.,1987,58:2 059~2 062. [2]John S.Strong localization of photons in certain d isorder-ed d ielectric superlattices[J].Phy.Rev.Lett.,1987,58:2 486~2 489. [3]Joannopou los J D,M eade R D,W inn J N.Photon icCrystals[M].Princeton,N.J:Princeton Un iversityPress,1995. [4]Kosaka H,Kawash im a T,Tom ita A,et al.Supeprismphenom ena in photon ic crystals[J].Phys.Rev.(B),1998,58:R10 096~R10 099. [5]Tran P.Optical lim iting and sw itch ing of short pu lses byuse of a non linear photon ic bandgap structure w ith a de-fect[J].J.Opt.Soc.,Am(B),1997,14:2 589~2 595. [6]Tonoyuk i Yosh ie O leg,Shohek in B,Hao Cheng,et al.P lanar photon ic crystal nanolasers[J].IEICE.Trans.E lectron.,2004,E87-C(3):300~307. [7]M ek is A.H igh trsnsm ission through sharp bends in pho-tonec crystal wavegu ides[J].Phys.Rev.Lett.,1996,77:3 787~3 790. [8]L in Shawn-Yu,F lem ing J G,Chow E.Two-and Three-D im ensional Photon ic Crystals Bu ilt w ith VLSI Tools[Z].MRS BULLETIN,2001,AUGUST:627~630. [9]G run ing U,Lehm ann V,Busch K.M acroporous siliconw ith a comp lete two-d im ensional photon ic band gapcenterce at 5 um[J].App l.Phys.Lett.,1996,68:747~749. [10]Cheng C C,SchererA,Tyan R C,et al.New fabrica-tion techn iques for h igh quality photon ic crystals[J].J.Vac.Sc i.Technol.(B),1997,15:2 764~2 767. [11]Zhu Z H(朱志宏),YeW M(叶卫民).Researchm entof the transport property of photon ic crystals by the ap-p lication of the F in inte-D ifference Tim e-Dom ain(FDTD)m ethod[J].Acta Optica S in ica,2003,23(5):511~515.
文章导航

/