欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

氢气泡模板法电沉积制备三维多孔铜薄膜

  • 孙雅峰 ,
  • 牛振江
展开
  • 浙江师范大学物理化学研究所浙江省固体表面反应化学重点实验室,浙江师范大学物理化学研究所浙江省固体表面反应化学重点实验室,浙江师范大学物理化学研究所浙江省固体表面反应化学重点实验室,浙江师范大学物理化学研究所浙江省固体表面反应化学重点实验室 浙江金华321004,浙江金华321004,浙江金华321004,浙江金华321004

收稿日期: 2006-05-28

  修回日期: 2006-05-28

  网络出版日期: 2006-05-28

Electrodeposition of Three-dimensional Porous Copper Films Using Hydrogen Bubbles as Template

  • SUN Ya-feng ,
  • NIU Zhen-jiang~
Expand
  • (*),CEN Shu-qiong,LI Ze-lin(Institute of Physical Chemistry,Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces,Zhejiang Normal University,Jinhua 321004,Zhejiang,China

Received date: 2006-05-28

  Revised date: 2006-05-28

  Online published: 2006-05-28

摘要

应用阴极析氢气泡模板法电沉积制备三维多孔铜薄膜,基础电解液组成为0.2 mol.dm-3CuSO4和1.5 mol.dm-3H2SO4.研究了电流密度(0.5~8.0 A.cm-2)、温度(20~70℃)、支持电解质(Na2SO4)以及添加剂HC l和聚乙二醇(PEG)等对薄膜的孔径大小和孔壁结构的影响.扫描电子显微镜(SEM)分析表明,降低镀液温度和添加Na2SO4、PEG都可降低孔径的大小,但对孔壁结构无影响.加入微量的氯离子可显著改变薄膜的孔壁结构,得到孔壁结构较为致密的三维多孔铜电极.循环伏安(CV)测试结果显示三维多孔铜薄膜电极在碱性条件下电氧化甲醇的电流密度比光滑铜电极提高了近20倍.

本文引用格式

孙雅峰 , 牛振江 . 氢气泡模板法电沉积制备三维多孔铜薄膜[J]. 电化学, 2006 , 12(2) : 177 -182 . DOI: 10.61558/2993-074X.1718

Abstract

Using cathodic hydrogen bubbles as a template,the three-dimensional(3-D) porous copper films have been successfully electrodeposited from a bath of 0.2 mol·dm~(-3) CuSO_(4) and 1.5 mol·dm~(-3) H_(2)SO_(4),effects of deposition parameters including temperature,current density and additives(Na_(2)SO_(4),HCl and Polyethylene glycol(PEG)) on the morphologies of the deposits have been systematically studied.SEM results showed that both the pore size and thickness of the pore walls decreased with cooling the electrolyte temperature or adding(Na_(2)SO_(4)) or PEG into the bath when the other deposition parameters were fixed.With addition small amounts of HCl in the bath,the wall structures of the films could be profoundly changed by refining the copper grains and reducing the branch growth.HCl and PEG coexisting in the bath resulted in more compact structure in the pore wall.The cyclic voltammetry(CV) of electro oxidation of methanol on the 3-D porous copper films in 0.5 mol·dm~(-3) NaOH + 0.25mol·dm~(-3) methanol revealed that the current density peak of methanol oxidation reached about 100 mA·cm~(-2), which is larger almost 20 times than that on the smooth copper electrode.

参考文献

[1]Banhart J.M anufacture,characterization and app lica-tion of cellu larm etals and m etal foam s[J].Prog.M a-ter.Sc i.,2001,46:559~632. [2]B rown I J,Sotiropou los S.E lectrodeposition of N i froma h igh internal phase emu lsion(H IPE)temp late[J].E lectroch im.Acta,2001,46:2711~2720. [3]Nelson P A,Owen J R.A h igh-perform ance superca-pac itor/battery hybrid incorporating temp lated m eso-porous electrodes[J].J.E lectrochem.Soc.,2003,150(10):A1313~A1317. [4]Attard G S,Bartlett P N,Colem an N R B,et al.M eso-porous p latinum film from lyotrop ic liqu id crystallinephase[J].Sc ience,1997,278:838~840. [5]Sheela G,Pushpavanam M,Pushpavanam S.Z inc-n ickel alloy electrodeposits for water electrolysis[J].Int.J.Hydrogen Energy,2002,27:627~633. [6]Sh in H C,Dong J,L iu M.Nanoporous structures pre-pared by an electrochem ical deposition process[J].Adv.M ater.,2003,15(19):1610~1613. [7]Sh in H C,L iu M.Copper foam structures w ith h ighlyporous nanostructured walls[J].Chem.M ater.,2004,16:5460~5464. [8]Sh in H C,L iu M.Three-d im entional porous copper-tinalloy electrodes for rechargeab le lith ium batteries[J].Adv.Funct.M ater.,2005,15:582~586. [9]Acharya A,U lbrech J J.Note on the influence of vis-coelastic ity on the coalescence rate of bubb les and drops[J].A lChE J.,1978,24(2):348~351. [10]Hahn P S,Slattery J C.E ffects of surface viscositieson the stab ility of a drain ing p lane parallel liqu id filmas a sm all bubb le approaches a liqu id-gas interface[J].A lChE J.,1985,31(6):950~956. [11]Kristof P,PritzkerM.E ffect of electrolyte compositionon the dynam ics of hydrogen gas bubb le evolution atcopper m icroelectrodes[J].J.App l.E lectrochem.,1997,27:255~265. [12]Craig V S J,N inham B W,Pashley R M.E ffect of e-lectrolytes on bubb le coalescence[J].Nature,1993,364(22):317~319. [13]M iklavic S J.Deform ation of flu id interfaces underdoub le-layer forces stab ilizes bubb le d ispersions[J].Phys.Rev.E,1996,54:6551~6556. [14]Deschenes L A,Barrett J,Mu ller L J,et al.,Inh ib i-tion of bubb le coalescence in aqueous solutions.1.e-lectrolytes[J].J.Phys.Chem.B,1998,102:5115~5119. [15]Hofm e ierU,Yam insky V V,Christenson H K.Obser-vations of solute effects on bubb le form ation[J].J.Colloid Interface Sc i.,1995,174:199~210. [16]Tantavichet N,PritzkerM D.E ffect of p lating mode,th iourea and chloride on the morphology of copper de-posits produced in ac id ic su lphate solutions[J].E lec-troch im.Acta,2005,50:1849~1861. [17]Bonou L,Eyraud M,Denoyel R,et al.Influence ofadd itives on Cu electrodeposition m echan ism s in ac idsolution:d irect current study supported by non-electro-chem ical m easurem ents[J].E lectroch im.Acta,2002,47:4139~4148. [18]Zahradnm J,Kuncova k G,F ialova M.The effect ofsurface active add itives on bubb le coalescence and gasholdup in viscous aerated batches[J].Chem.Eng.Sc i.,1999,54:2401~2408. [19]Kang M C,Gew irth A A.Voltamm etric and forcespectroscop ic exam ination of oxide form ation on Cu(Ⅲ)in basic solution[J].J.Phys.Chem.B,2002,106:1211~1220. [20]HeliH,Jafarian M,M ahjan iM G,Gob le F.E lectro-oxidation of m ethanol on copper in alkaline solution[J].E lectroch im i.Acta,2004,49:4999~5006. [21]Paix o T R L C,Corbo D,BertottiM.Amperom etricdeterm ination of ethanol in beverages at copper elec-trodes in alkaline m ed ium[J].Anal.Ch im.Acta,2002,472:123~131.
文章导航

/