首次研究高价银氧化物Ag3O4(可看作为由Ag(Ⅲ)和Ag(Ⅱ)*组成)在碱性水溶液中的电化学性质和反应机理.循环伏安和XRD测试表明,Ag3O4在碱性溶液中的电化学还原过程比较复杂:在较慢的放电条件下,Ag3O4中的Ag(Ⅲ)按照Ag(Ⅲ)→Ag(Ⅱ)→Ag(Ⅰ)→Ag反应途径逐步还原为单质银;在较快的放电条件下,Ag(Ⅲ)可以直接被还原为Ag(Ⅰ),即Ag(Ⅲ)→Ag(Ⅰ)→Ag.而Ag(Ⅱ)*可直接还原成金属Ag.Ag3O4的理论放电容量可以达到553.1 mAh/g,比通常锌-氧化银电池所用AgO的电容量高出27.8%.在119C放电倍率下,Ag3O4的放电容量依然达到理论容量的83%.显示了作为新型化学电源材料的应用前景.
The electrochemical properties of high-valence silver oxide Ag_(3)O_(4)in alkaline solution were investigated for the first time and the reduction mechanism of Ag_(3)O_(4) was proposed.It can be recognized that Ag_(3)O_(4)consists of_()Ag(Ⅲ) and Ag(Ⅱ)~(*).From the results of voltammetry and XRD experiments it was found that the reduction process of Ag_(3)O_(4) was more complicated.It could be electrochemically reduced through the series reactions of Ag(Ⅲ) →Ag(Ⅱ) →Ag(Ⅰ) →Ag(O) at low discharge rate or Ag(Ⅲ) →Ag(Ⅰ) →Ag(O) at higher discharge rate.And the Ag(Ⅱ)~(*) could be reduced to Ag directly at low potential region.In addition,it is interesting to note that Ag_(3)O_(4) presents the theoretical specific discharge capacity of 553.0mAh/g at high discharge rate,which is 27.8% higher than that of the commonly used cathodic material AgO in zinc/silver oxide battery.Under high discharge rate of 119C,Ag_(3)O_(4) still presents the specific discharge capacity as high as 83% of theoretical value.Ag_(3)O_(4) may have the attractive future for the use in alkaline batteries.
[1]Hoar T P,Dyer C K.The silver/silver-oxide electrode-Ⅰ.Developm ent of electrode by slow ac cyc ling[J].E lectroch im.Acta,1972,17:1563.
[2]D roog J M M,Hu ism an F.E lectrochem ical form ationand reduction of silver oxides in alkaline m ed ia[J].J.E lectroanal.Chem.,1980,115:211.
[3]Te ijeloM L,V ilche J R,Arvia A J.The electroform a-tion and electroreduction of anod ic film s form ed on silverin 0.1 M sod ium hydroxide in the potential range of theAg/Ag2O coup le[J].J.E lectroanal.Chem.,1984,162:207.
[4]HepelM,Tomk iew icz M.Relaxation spectrum analysisof galvanostatic oxidation of silver electrodes[J].J.E lectrochem.Soc.,1986,133(8):1625.
[5]Becerra J G,Salvarezza R C,Arvia A J.The role of aslow phase form ation process in the growth of anod ic sil-ver oxide layers in alkaline solutions-Ⅰ.E lectroform a-tion of Ag(Ⅰ)oxide layer[J].E lectroch im.Acta,1988,33(10):1431.
[6]Becerra J G,Salvarezza R C,Arvia A J.K inetic studyof silver(I)oxide layer electroreduction[J].E lectro-ch im.Acta,1990,35(3):595.
[7]D irkse T P.Open c ircu it voltages of electrolytically pre-pared AgO[J].E lectroch im.Acta,1991,36(10):1533.
[8]Jiang Zh iyu,Huang S iyu,Q ian B in.Sem iconductorproperties of Ag2O film form ed on the silver electrode in1 M NaOH solution[J].E lectroch im.Acta,1994,39(16):2465.
[9]Savinova E R,Zem lyanov D,Pettinger B,et al.On them echan ism of Ag(111)sub-monolayer oxidation:acomb ined electrochem ical,in situ SERS and ex situXPS study[J].E lectroch im.Acta,2000,46:175.
[10]Standke B,Jansen M.Ag3O4,the first silver(Ⅱ,Ⅲ)oxide[J].Angew.Chem.Int.Ed.Engl.,1986,25(1):77.
[11]Standke B,Jansen M.Darstellung und kristallstrukturvon Ag3O4[J].J.Solid State Chem.,1987,67:278.
[12]F ischer P,Jansen M.Cyc lovoltamm etrische undr ntgenbeugungsuntersuchungen zur anod ischen absche i-dung h herer silberoxide[J].Solid State Ion ics,1990,43:61.