欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

功能化碳纳米管的电化学性质及在6-巯基嘌呤分析检测中的应用

  • 陆宝仪 ,
  • 赖艳艳
展开
  • 华南师范大学化学与环境学院;

收稿日期: 2009-02-28

  修回日期: 2009-02-28

  网络出版日期: 2009-02-28

Electrochemical Properties of Functionalized Carbon Nanotubes and Their Applications in Analysis of 6-mercaptopurine

  • LU Bao-yi ,
  • LAI Yan-yan
Expand
  • (School of Chemistry and Environment,South China Normal University,Guangzhou 510006,China

Received date: 2009-02-28

  Revised date: 2009-02-28

  Online published: 2009-02-28

摘要

采用修饰单壁碳纳米管(SWNT、SWNT-COOH或SWNT-OH)及多壁碳纳米管(MWNT、MWNT-COOH或MWNT-OH)的石墨电极研究配位阴离子[Fe(CN)6]3-和配位阳离子[Co(phen)3]3+的电化学行为与吸附性能,借助[Co(phen)3]3+在碳纳米管(CNT)的强吸附特性制备[Co(phen)3]3+/CNT/C修饰电极,以其应用于6-MP的分析检测.结果表明:1)在CNT修饰电极上[Fe(CN)6]3-/4-呈现很好的氧化还原可逆性,而[Co(phen)3]3+则显示明显的吸附控制特征.2)[Co(phen)3]3+在多壁碳纳米管修饰电极上的吸附量较单壁碳纳米管大,但经羧基化或羟基化后,吸附量减小,而且在羧基化表面的吸附量较羟基化的大.3)[Co(phen)3]3+与6-MP间存在明显的相互作用,其配位产物的还原峰电流与6-MP浓度呈线性关系.

本文引用格式

陆宝仪 , 赖艳艳 . 功能化碳纳米管的电化学性质及在6-巯基嘌呤分析检测中的应用[J]. 电化学, 2009 , 15(1) : 67 -73 . DOI: 10.61558/2993-074X.1957

Abstract

The electrochemical behaviors and adsorption properties of single-walled carbon nanotubes such as SWNT,SWNT-COOH,and SWNT-OH and multi-walled carbon nanotubes including MWNT,MWNT-COOH,and MWNT-OH modified at a graphite electrode have been investigated by using [Fe(CN)6]3-anion and [Co(phen)3]3+ cation.It was shown that shows good redox reversibility of [Fe(CN)6]3-/4-reactions on the existed carbon nanotubes(CNT) modified electrode.Based on the strong adsorptive property of [Co(phen)3]3+ on the CNT surface,the [Co(phen)3]3+/CNT modified graphite electrode can be obtained by progressive potential sweeping and developed to monitor quantitatively 6-mercaptopurine(6-MP).The adsorption capacity of [Co(phen)3]3+ on the multi-walled carbon nanotubes is higher than that of single-walled carbon nanotubes.For the carbon nanotubes with carboxylic or hydroxyl functionalized groups(CNT-COOH or CNT-OH),the adsorbed intensity was weakened,where the adsorptive intensity on the CNT-COOH surface was better.In addition,there was an obvious interaction between [Co(phen)3]3+ and 6-MP.6-MP was detected by monitoring the reductive current values of the [Co(phen)3]3+-6-MP complex generated by the interaction of [Co(phen)3]3+ on the CNT modified graphite electrode with 6-MP.

参考文献

[1]Escobar M,Moreno M S,Candal R J,et al.Synthesisof carbon nanotubes by CVD:effect of acetylene pres-sure on nanotubes characteristics[J].Appl Surf Sci,2007,254(1):251-256. [2]Hsu H L,Jehng J M,Sung Y,et al.The synthesis,characterization of oxidized multi-walled carbon nano-tubes,and application to surface acoustic wave quartzcrystal gas sensor[J].Mater Chem Phys,2008,109(1):148-155. [3]Ramesh P,Okazaki T,Sugai T,et al.Purification andcharacterization of double-wall carbon nanotubes synthe-sized by catalytic chemical vapor deposition on meso-porous silica[J].Chem Phys Lett,2004,84(1):140-145. [4]Murakami Y,Miyauchi Y,Chiashi S,et al.Character-ization of single-walled carbon nanotubes catalyticallysynthesized from alcohol[J].Chem Phys Lett,2003,374(1-2):53-58. [5]Zou HL(邹红玲),Yang Y L(杨延莲),Wu B(武斌),et al.Purification and characterization of singlewalled carbon nanotubes synthesized by chemical vapordeposition[J].Acta Phys-Chim Sin,2002,18(5):409-413. [6]Becher M,Haluska M,Hirscher M,et al.Hydrogenstorage in carbon nanotubes[J].CR Phys,2003,4(9):1055-1062. [7]Frackowiak E,Gautier S,Gaucher H,et al.Electro-chemical storage of lithium in multiwalled carbon nano-tubes[J].Carbon,1999,37(1):61-69. [8]Ye X Y(叶晓燕),Wang Y Z(王艳芝),Song H Y(宋海燕),et al.A study on supercapacitor based onaligned carbon nanotubes[J].Electrochemistry,2008,14(1):24-29. [9]Yadegari H,Jabbari A,Heli H,et al.Electrocatalyticoxidation of deferiprone and its determination on a car-bon nanotube-modified glassy carbon electrode[J].Electrochim Acta,2008,53(6):2907-2916. [10]Okuno J,Maehashi K,Matsumoto K,et al.Single-walled carbon nanotube-arrayed microelectrode chip forelectrochemical analysis[J].Electrochem Commun,2007,9(1):13-18. [11]Luo HX,Guo Z X,He N.Reversible electrochemis-try of DNA on multi-walled carbon nanotube modifiedelectrode[J].Chinese Chem Lett,2007,18(7):861-864. [12]Salimi A,Miranzadeh L,Hallaj R.Amperometric andvoltammetric detection of hydrazine using glassy carbonelectrodes modified with carbon nanotubes and catecholderivatives[J].Talanta,2008,75(1):147-156. [13]Salimi A,Kavosi B,Babaei A,et al.Electrosorptionof Os(III)-complex at single-wall carbon nanotubesimmobilized on a glassy carbon electrode:applicationto nanomolar detection of bromate,periodate and io-date[J].Anal Chim Acta,2008,618(1):43-53. [14]Chen J,Bao J,Cai C,et al.Electrocatalytic oxidationof NADH at an ordered carbon nanotubes modifiedglassy carbon electrode[J].Anal Chim Acta,2004,516(1-2):29-34. [15]Luo HX(罗红霞),Shi Z J(施祖进),Li N Q(李南强),et al.Investigation on the electrochemical andelectrocatalytic behavior of chemically modified elec-trode of single wall carbon nanotube functionalized withcarboxylic acid group[J].Chem J Chin Univer,2000,21(9):1372-1374. [16]Tao Y,Lin Z J,Chen X M,et al.Functionalized mul-tiwall carbon nanotubes combined with bis(2,2′-bipyr-idine)-5-amino-1,10-phenanthroline ruthenium(II)asan electrochemiluminescence sensor[J].Sensor Ac-tuat B-Chem,2008,129(2):758-763. [17]Cao X N,Lin L,Zhou Y Y,et al.Study of the inter-action of 6-mercaptopurine with protein by microdialys-is coupled with LC and electrochemical detection basedon functionalized multi-wall carbon nanotubes modifiedelectrode[J].J Pharmaceut Biomed,2003,32(3):505-512. [18]Shen X C,Jiang L F,Liang H,et al.Determinationof 6-mercaptopurine based on the fluorescence en-hancement of Au nanoparticles[J].Talanta,2006,69(2):456-462. [19]Yang H,Liu Y,Liu Z,et al.Raman mapping and insitu SERS spectroelectrochemical studies of 6-mercap-topurine SAMs on the gold electrode[J].J PhysChem B,2005,109(7):2739-2744. [20]Maduen~o R,Sevilla J M,Pineda T,et al.A voltam-metric study of 6-mercaptopurine monolayers on poly-crystalline gold electrodes[J].J Electroanal Chem,2001,506(2):92-98. [21]Sevilla J M,Pineda T,Madue o R,et al.Character-ization of 6-mercaptopurine monolayers on Hg surfaces[J].J Electroanal Chem,1998,442:107-112. [22]Grassini-Strazza G,Sinibaldi M.Preparation and char-acterization of cobalt(III)bipyridine and phenanthro-line complexes[J].Inorg Chim Acta,1980,44:295-297. [23]Zhang J J(张久俊),Lu J T(陆君涛),Cha C S(查全性),et al.In-situ FTIR reflection-absorptionspectroscopic measurements of ferrocyanide ions andthincyanate ions on Pt,Cu electrodes[J].J Instru-mental Analysis,1989,8(6):33-37. [24]Gu R A(顾仁敖),Yao J L(姚建林),Yuan Y X(袁亚仙),et al.Raman spectroscopic studies ofFe(CN)63-/4-redox process at gold electrode surfaces[J].Chem J Chinese U,1997,18(10):1680-1682. [25]Wang J,Wang Y,Lv H,et al.Studies of interactionbetween iron(III)and intermediates of synthetic neu-romelanin by means of cyclic voltammetry ofFe(CN)63-and dopamine[J].J Electroanal Chem,2006,594:59-64. [26]Gao Y N,Li N,Zheng L Q,et al.A cyclic voltam-metric technique for the detection of micro-regions ofbmimPF(6)/Tween 20/H2O microemulsions and theirperformance characterization by UV-Vis spectroscopy[J].Green Chem,2006,8,43-49. [27]Ozoemena K I,Pillay J,Nyokong T.Preferential elec-trosorption of cobalt(II)tetra-aminophthalocyanine atsingle-wall carbon nanotubes immobilized on a basalplane pyrolytic graphite electrode[J].ElectrochemCommun,2006,8(8):1391-1396. [28]Bard A J,Faulkner L R.Electrochemical methods:fundamentals and applications[M].New York:JohnWiley and Sons,1980,213-546. [29]Zhou C F,Du X S,Li H.Studies of interactions a-mong cobalt(III)polypyridyl complexes,6-mercapto-purine and DNA[J].Bioelectrochemistry,2007,70:446-451.
文章导航

/