欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

质子钛酸盐热解纳米TiO_2的光电性能

  • 曲婕 ,
  • 李颖 ,
  • 姜奇伟 ,
  • 高学平
展开
  • 南开大学新能源材料化学研究所;

收稿日期: 2009-02-28

  修回日期: 2009-02-28

  网络出版日期: 2009-02-28

Photoelectrochemical Properties of TiO_2 Nanoparticles

  • QU Jie ,
  • LI Ying ,
  • JIANG Qi-wei ,
  • GAO Xue-ping
Expand
  • (Institute of New Energy Material Chemistry,Nankai University,Tianjin 300071,China

Received date: 2009-02-28

  Revised date: 2009-02-28

  Online published: 2009-02-28

摘要

应用常温搅拌法合成质子钛酸盐,在不同的温度下煅烧生成TiO2纳米晶.X射线衍射、透射电镜、扫描电镜、紫外-可见光谱、光电压~电流和交流阻抗测试,表明500℃煅烧下制备的TiO2纳米晶表现出较好的光电性能,转换效率达到6.39%.

本文引用格式

曲婕 , 李颖 , 姜奇伟 , 高学平 . 质子钛酸盐热解纳米TiO_2的光电性能[J]. 电化学, 2009 , 15(1) : 26 -29 . DOI: 10.61558/2993-074X.1948

Abstract

The protonated titanate nanoparticles were obtained at room temperature and subsequently calcined at different temperatures(300 ℃,400 ℃,500 ℃,600 ℃ and 700 ℃) in air.The obtained products were characterized by XRD,TEM and UV-Vis.It is found that the grain sizes of TiO2 nanoparticles calcined at 300 ℃ were about 20 nm,and increased gradually with the temperature rise.Photoelectric performance was measured with I~V curve and electrochemical impedance spectroscopy(EIS).The TiO2 nanoparticles obtained at 500 ℃ showed the best photoelectrochemical properties with a photovoltaic conversion efficiency of 6.39%,which is much higher than those at other temperatures.In addition,it is also demonstrated that the charge transfer resistance of TiO2 nanoparticles obtained at 500 ℃ was much smaller.

参考文献

[1]O’Regan B,Gratzel M.A low-cost,high-efficiency so-lar cell based on dye-sensitized colloidal TiO2films[J].Nature,1991,353:737-740. [2]Nazeeruddin MK,Kay A,Gratzel M,et al.Conversionof light to electricity by cis-XzBis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II)charge-transfer sensi-tizers(X=C1-,Br-,I-,CN-,and SCN-)onnanocrystalline TiO2electrodes[J].J Am Chem Soc,1993,115:6382-6390. [3]Hagfeldt A,Gratzel M.Light-induced Redox reactionsin nanocrystalline systems[J].Chem Rev,1995,95:49-68. [4]Yang P,Zhao D,Margolese D I,et al.Generalizedsyntheses of large-pore mesoporous metal oxides with ae-micrystalline frameworks[J].Nature,1998,396:152-155. [5]Scolan A,Sanchez C.Synthesis and characterization ofsurface-protected nanocrystalline titania particles[J].Chem Mater,1998,10:3217-3223. [6]Cass M J,Qiu F L,Alison W B,et al.Influence ofgrain morphology on electron transport in dye sensitizednanocrystalline solar cells[J].J Phys Chem B,2003,107:113-119. [7]Nakade S,Kubo W,Saito Y,et al.Influence of meas-urement conditions on electron diffusion in nanoporousTiO2films:Effects of bias light and dye adsorption[J].J Phys Chem B,2003,107:14244-14248. [8]Agrell HG,Boschloo G,Hagfeldt A.Conductivity stud-ies of nanostructured TiO2films permeated with electro-lyte[J].J Phys Chem B,2004,108:12388-12396. [9]Barnard AS,Curtiss L A.Prediction of TiO2nanoparti-cle phaseand shape transitions controlled by surfacechemistry[J].Nano Lett,2005,5:1261-1266. [10]Cass M J,Walker A B,Martinez D,et al.Grain mor-phology and trapping effects on electron transport indye-sensitized nanocrystalline solar cells[J].J PhysChem B,2005,109:5100-5107. [11]Lancelle-Beltran E,PrenéP,Boscher C,et al.All-solid-state dye-sensitized nanoporous TiO2hybrid solarcells with high energy-conversion efficiency[J].AdvMater,2006,18:2579-2582. [12]Snaith H J,Gratzel M.Electron and hole transportthrough mesoporous TiO2infiltrated with Spiro-MeOTAD[J].Adv Mater,2007,19:3643-3647. [13]Stathatos E,Lianos P.Increase of the efficiency ofquasi-solid state dye-sensitized solar cells by a synergybetween titania nanocrystallites of two distinct nanopar-ticle sizes[J].Adv Mater,2007,19:3338-3341. [14]Karthikeyan C S,Wietasch H,Thelakkat M.Highlyefficient solid-state dye-sensitized TiO2solar cells usingDonor-Antenna dyes capable of multistep charge-trans-fer cascades[J].Adv Mater,2007,19:1091-1095. [15]Yang S C,Yang D J,Kim J,et al.HollowTiO2hemi-spheres obtained by colloidal templating for applicationin dye-sensitized solar cells[J].Adv Mater,2008,20:1059-1064.
文章导航

/