利用调控ZnO纳米棒阵列的疏水、亲水性,由电化学方法制备了Pt纳米花/ZnO(PtNF/ZnO)复合阵列.该复合阵列排列规则、尺寸均一、方向一致.每一根ZnO纳米棒的顶端都覆盖着由Pt纳米颗粒构成的Pt纳米花,具有大的比表面积.与以亲水性的ZnO纳米棒制得的覆盖Pt纳米颗粒的ZnO复合阵列(PtNP/ZnO)以及单独的Pt颗粒相比,PtNF/ZnO复合阵列对甲醇氧化具有更高的电化学催化活性.
The Pt nanoflower/ZnO(PtNF/ZnO) nanorod composites arrays were electrochemically prepared by controlling the hydrophobicity and the hydrophilicity of ZnO nanorods arrays.The Pt nanoflowers grew on the tip of ZnO nanorods,which maintain the vertical array of Zno nanorods with a high degree of size uniformity and high surface area.Compared with Pt nanoparticle covered ZnO nanorod arrays,which were prepared by controlling the hydrophilicities of ZnO nanorods and Pt nanoparticles,the PtNF/ZnO displayed highest electrocatalytic activities for the oxidation of methanol.
[1]Chen C Y,Yang P.Performance of an air-breathing di-rect methanol fuel cell[J].J Power Sources,2003,123:37-42.
[2]Arico A S,Srinivasan S,Antonucci V.DMFCs:fromfundamental aspects to technology development[J].Fu-el Cells,2001,1:133-161.
[3]Liang Z X,Zhao TS.NewDMFC anode structure con-sisting of platinum nanowires deposited into a Nafionmembrane[J].J Phys Chem C,2007,111:8128-8134.
[4]Reddington E,Sapienza A,Gurau B,et al.Combinato-rial electrochemistry:a highly parallel,optical screen-ing method for discovery of better electrocatalysts[J].Science,1998,280:1735-1737.
[5]Winter M,Brodd R J.What are batteries,fuel cells,and supercapacitors?[J].Chem Rev,2004,104:4245-4270.
[6]Steele B C H,Heinzel A.Materials for fuel-cell tech-nologies[J].Nature,2001,414:345-352.
[7]Bell A T.The impact of nanoscience on heterogeneouscatalysis[J].Science,2003,299:1688-1691.
[8]Christensen P A,Hamnetand A,Troughton Q L.Therole of morphology in the methanol electro-oxidation re-action[J].J Electroanal Chem,1993,362:207-218.
[9]B nnemann H,Wald fner N,Haubold H G.Prepara-tion and characterization of three-dimensional Pt nanop-article networks[J].Chem Mater,2002,14:1115-1120.
[10]Tian N,Zhou Y,Sun S G,et al.Synthesis of tetra-hexahedral platinum nanocrystals with high-index facetsand high electro-oxidation activity[J].Science,2007,316:732-735.
[11]Ahmadi T S,Wang Z L,Green T C,et al.Shape-controlled synthesis of colloidal platinum nanoparticles[J].Science,1996,272:1924-1925.
[12]Tian N,Zhou Z Y,Sun S G,et al.Synthesis of tetra-hexahedral platinum nanocrystals with high-index facetsand high electro-oxidation activity[J].Science,2007,316:732-735.
[13]Liang H P,Zhang H M,Hu J S,et al.Pt hollownanospheres:facile synthesis and enhanced electrocat-alysts[J].Angew Chem Int Ed.,2004,43(12):1540-1543.
[14]Sun S H,Yang D,Villers D,et al.Template-and sur-factant-free room temperature synthesis of self-assem-bled 3D Pt nanoflowers from single-crystal nanowire[J].Adv Mater,2008,20;571-4.
[15]Zhao Y,Fan L Z,Zhong HZ,et al.Platinum nanop-article clusters immobilized on multi-walled carbonnanotubes:electrodeposition and enhanced electrocata-lytic activity for methanol oxidation[J].Adv FunctMater,2007,17:1537.
[16]Huang M H,Mao S,Feick H,et al.Room-tempera-ture ultraviolet nanowire nanolasers[J].Science,2001,292:1897-1899.
[17]Feng X J,Feng L,Jin M,et al.Reversible super-hy-drophobicity to super-hydrophilicity transition of a-ligned ZnO nanorod films[J].J Am Chem Soc,2004,126:62-63.