欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

DHP促进[Ru(bpy)_3]~(2+)介导鸟嘌呤的氧化

  • 张宝莲 ,
  • 洪伟 ,
  • 陆宝仪
展开
  • 华南师范大学化学与环境学院;

收稿日期: 2009-11-28

  修回日期: 2009-11-28

  网络出版日期: 2009-11-28

Enhanced [Ru(bpy)_3]~(2+)-mediated Oxidation of Guanine Prompted by DHP

  • ZHANG Bao-lian ,
  • HONG Wei ,
  • LU Bao-yi
Expand
  • (School of Chemistry and Environment,South China Normal University,Guangzhou 510006,China

Received date: 2009-11-28

  Revised date: 2009-11-28

  Online published: 2009-11-28

摘要

应用循环伏安法和微分脉冲伏安法研究了ITO电极上双十六烷基磷酸盐(DHP)和多壁碳纳米管(MWNTs)对[Ru(bpy)3]2+(bpy=2,2′-联吡啶)介导鸟嘌呤氧化的影响.结果表明,[Ru(bpy)3]2+能够介导鸟嘌呤氧化.在0.01至0.15 mmol.L-1DHP浓度范围内,[Ru(bpy)3]2+介导鸟嘌呤氧化峰电流随DHP浓度的增大而增大,阳离子表面活性剂HTAC则起抑制作用.讨论了DHP参与[Ru(bpy)3]2+介导鸟嘌呤氧化的可能电极过程机理.

本文引用格式

张宝莲 , 洪伟 , 陆宝仪 . DHP促进[Ru(bpy)_3]~(2+)介导鸟嘌呤的氧化[J]. 电化学, 2009 , 15(4) : 445 -449 . DOI: 10.61558/2993-074X.2022

Abstract

The effects of dihexadecyl phosphate(DHP) and multi-walled carbon nanotubes(MWNTs) on the oxidation of guanine mediated by[Ru(bpy)3]2+ on the ITO electrode have been investigated by cyclic voltammetry and differential pulse voltammetry.The results showed that [Ru(bpy)3]2+ can mediate the oxidation.In the range from 0.01 to 0.15 mmol·L-1,peak currents for guanine oxidation mediated by [Ru(bpy)3]2+ increased with the rise of DHP concentrations.On the contrary,cationic surfactant HTAC has the ability to weaken the mediated oxidation of guanine.In addition,the oxidative mechanism of guanine mediated by [Ru(bpy)3]2+ with the participation of DHP is discussed.

参考文献

[1]Goyal R N,Dryhurst G.Redox chemistry of guanine and8-oxyguanine and a comparison of the peroxidase-cata-lyzed and electrochemical oxidation of 8-oxyguanine[J].J Electroanal Chem,1982,135:75-91. [2]Goyal R N,Sondhi S M,Lahoti A M.Investigations ofelectron-transfer reactions and the redox mechanism of2′-deoxyguanosine-5′-monophosphate using electrochem-ical techniques[J].New J Chem,2005,29:587-595. [3]Wang HS,Ju HX,Chen HY.Simultaneous determina-tion of guanine and adenine in DNA using an electro-chemically pretreated glassy carbon electrode[J].AnalChim Acta,2002,461:243-250. [4]Abbaspour A,Mehrgardi MA.Elecctrocatalytic oxidationof guanine and DNA on a carbon paste electrode modi-fied by cobalt hexacyanoferrate films[J].Anal Chem,2004,76:5690-5696. [5]Shen HB(沈鹤柏),Xia J F(夏静芬),Wang Z S(王浙苏),et al.Electrochemical quartz crystal microbal-ance study on the electrochemical behavior of guanine,guansine and guansine phosphate at gold electrode[J].Chem J Chin Univ(in Chinese),2001,22:962-965. [6]Mugweru A,Rusling J F.Square wave voltammetric de-tection of chemical DNA damage with catalytic poly(4-vinylpyridine)-Ru(bpy)22+films[J].Anal Chem,2002,74:4044-4049. [7]Wang B Q,Rusling J F.Voltammetric sensor for chemi-cal toxicity using[Ru(bpy)2poly(4-vinylpyridine)10Cl)]+as catalyst in ultrathin films.DNA damage frommethylating agents and an enzyme-generated epoxide[J].Anal Chem,2003,75:4229-4235. [8]Dryhurst G.Adsorption of guanine and guanosine at thepyrolytic graphite electrode.Implications for the determi-nation of guanine in the presence of guanosine[J].AnalChim Acta,1971,57:137-149. [9]Dryhurst G.Electrochemical determination of adenineand adenosine Adsorption of adenine and adenosine atthe pyrolytic graphite electrode[J].Talanta,1972,19:769-778. [10]Palecˇek E,Jelen F.Electrochemistry of nucleic acidsand development of DNA sensors[J].Crit Rev AnalChem,2002,32:261-270. [11]Johnston D H,Glasgow K C,Thorp HH.Electrochemi-cal measurement of the solvent accessibility of nucleo-bases using electron transfer between DNA and metalcomplexes[J].J Am Chem Soc,1995,117:8933-8938. [12]Ontko A C,Armistead P M,Kircus S R,et al.Electro-chemical detection of single-stranded DNA using poly-mer-modified electrodes[J].Inorg Chem,1999,38:1842-1846. [13]Szalai V A,Jayawickamarajah J,Thorp HH.Electroca-talysis of guanine oxidation in polyethylene glycol solu-tions:The interplay of adsorption and reaction rate[J].J Phys Chem B,2002,106:709-716. [14]Holmberg R C,Thorp H H.Digital simulation of cata-lytic cyclic voltammograms for oxidation of DNA by aheterobimetallic dimer:effects of DNA binding andmass transport[J].Anal Chem,2003,75:1851-1860. [15]Wang J,Kawde A N,Musameh M.Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization[J].Analyst,2003,128:912-916. [16]Garg A,Sinnott S B.Effect of chemical functionaliza-tion on the mechanical properties of carbon nanotubes[J].Chem Phys Lett,1998,295:273-278. [17]Kang Y J,Taton T A.Micelle-encapsulated carbonnanotubes:A route to nanotube composites[J].J AmChem Soc,2003,125:5650-5651. [18]Rusling J F,Nassar A E F.Enhanced electron transferfor myoglobin in surfactant films on electrodes[J].JAm Chem Soc,1993,115:11891-11897. [19]Yang X F,Wang F,Hu S S.Enhanced oxidation of di-clofenac sodium at a nano-structured electrochemicalsensing film constructed by multi-wall carbon nano-tubes-surfactant composite[J].Materials Science andEngineering:C,2008,28:188-194. [20]Napier ME,Hull D O,Thorp HH.Electrocatalytic Ox-idation of DNA-Wrapped Carbon Nanotubes[J].J AmChem Soc,2005,127:11952-11953. [21]Gao Y A,Li N,Zheng L Q,et al.A cyclic voltammetrictechnique for the detection of micro-regions ofmimPF6/Tween 20/H2O microemulsions and their per-formance characterization by UV-Vis spectroscopy[J].Green Chem,2006,8:43-49.
文章导航

/