欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

一氧化碳在钯薄膜修饰的金电极上的电氧化-厚度的影响(英文)

展开
  • 美国迈阿密大学化学与生化系;

收稿日期: 2010-08-28

  修回日期: 2010-08-28

  网络出版日期: 2010-08-28

Electrooxidation of Carbon Monoxide on Pd Thin Film-Coated Au Electrodes:Film Thickness Dependence

Expand
  • ( Department of Chemistry and Biochemistry,Miami University,Oxford,OH 45056,USA

Received date: 2010-08-28

  Revised date: 2010-08-28

  Online published: 2010-08-28

摘要

采用扫描循环伏安法及表面增强拉曼散射光谱研究了一氧化碳(CO)在钯修饰金电极上的吸附与氧化.结果表明CO氧化电位随钯膜厚度增加而正移,同时C—O伸缩振动频率红移.本文利用d能带理论解释观察现象.应力效应使CO吸附变强,难以氧化;但配体效应使CO吸附变弱,易于氧化.在薄膜中配体效应强于应力效应.

本文引用格式

Yuqing Yang, Shouzhong Zou . 一氧化碳在钯薄膜修饰的金电极上的电氧化-厚度的影响(英文)[J]. 电化学, 2010 , 16(3) : 279 -284 . DOI: 10.61558/2993-074X.3356

Abstract

The adsorption and electrooxidation of CO on Pd-coated Au electrodes were studied by cyclic voltammetry and surface-enhanced Raman spectroscopy (SERS) . It is found that CO oxidation activity is film thickness dependent. Cyclic voltammograms (CVs) showed that CO oxidation peak potential shifted positively with the increase of the Pd thickness. SERS showed a redshift of the C—O stretching frequency with increasing Pd film thickness. These observations were explained by the dband theory. The strain effect strengthens CO adsorption and stabilizes adsorbed CO,while the ligand effect weakens CO adsorption and eases its oxidation. The ligand effect overpowers the strain effect.

参考文献

[1] Rodriguez J A,Goodman D W. The nature of the metal- metal bond in bimetallic syrfaces[J]. Science,1992, 257: 897-903.
[2] Campbell R A,Rodriguez J A,Goodman D W. Chemical and electronic-properties of ultrathin metal-films-The Pd/Re( 0001) and Pd/Ru ( 0001) systems[J]. Phys Rev B,1992,46: 7077.
[3] Kitchin J R,Nrskov J K,Barteau M A,et al. Role of strain and ligand effects in the modification of the elec- tronic and chemical properties of bimetallic surfaces [J]. Physical Review Letters,2004,93: 156801.
[4] Kitchin J R,Nrskov J K,Barteau M A,et al. Modifica- tion of the surface electronic and chemical properties of Pt( 111) by subsurface 3d transition metals[J]. J Chem Phys,2004,120: 10240.
[5] Mavrikakis M,Hammer B,Norskov J K. Effect of strain on the reactivity of metal surfaces[J]. Physical Review Letters,1998,81: 2819-2822.
[6] Kampshoff E,Hahn E,Kern K. Correlation between sur- face stress and the vibrational shift of CO chemisorbed on Cu surfaces[J]. Physical Review Letters,1994,73: 704-707.
[7] Hartmann H,Diemant T,Bansmann J,et al. Chemical properties of structurally well-defined PdRu/Ru( 0001) surface alloys Interaction with CO[J]. Surface Science, 2009,603( 10 /12) : 1456-1466.
[8] Kumar S,Zou S Z. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanop- articles: Effects of film thickness[J]. Langmuir,2007,23( 13) : 7365-7371.
[9] Du B,Tong Y. A coverage-dependent study of Pt sponta- neously deposited onto Au and Ru surfaces: Direct ex- perimental evidence of the ensemble effect for methanol electro-oxidation on Pt[J]. J Phys Chem B,2005,109: 17775.
[10] Gao P,Patterson M L,Tadayyoni M A,et al. Gold as a ubiquitous substrate for intense surface-enhanced Ra- man scattering[J]. Langmuir,1985,1: 173-176.
[11] Brankovic S R,Wang J X,Adzic R R. Metal monolayer deposition by replacement of metal adlayers on elec- trode surfaces[J]. Surface Science,2001,474: 173- 179.
[12] Mrozek M F,Xie Y,Weaver M J. Surface-enhancedRaman scattering on uniform platinum-group overlay- ers: preparation by redox replacement of underpoten- tial-deposited metals on gold[J]. Analytical Chemis- try,2001,73( 24) : 5953-5960.
[13] Kittel C. Introdcution to solid state physics[M]. John Wiley & Sons: New York,1996.
[14] Pinheiro A L N,Zei M S,Luo M F,et al. The epitaxial growth of Pd electrodeposition on Au( 100) studied by LEED and RHEED[J]. Surface Science,2006,600: 641.
[15] Harrison W A. Electronic structure and the properties of solids[M]. Freeman: San Francisco,1980.
[16] Zou S,Weaver M J. Potential-dependent metal-adsor- bate stretching frequencies for carbon monoxide on transition-metal electrodes: Chemical bonding versus electrostatis effects[J]. J Phys Chem,1996,100: 4237- 4242.
[17] Hu J W,Li J F,Ren B,et al. Palladium-coated gold nanoparticles with a controlled shell thickness used assurface-enhanced Raman scattering substrate[J]. Jour- nal of Physical Chemistry C,2007,111 ( 3 ) : 1105- 1112.
[18] Zou,S Z,Weaver M J,Surface-enhanced Raman scat- tering an uniform transition metal films: Toward a ver- satile adsorbate vibrational strategy for solid-nonvacu- um interfaces? [J]. Analytical Chemistry,1998,70 ( 11) : 2387.
[19] Zou S Z,Williams C T,Chen E K Y,et al. Surface-en- hanced Raman scattering as a ubiquitous vibrational probe of transition-metal interfaces: Benzene and relat- ed chemisorbates on palladium and rhodium in aqueous solution[J]. Journal Of Physical Chemistry B,1998, 102( 45) : 9039.
[20] Tian Z Q,Ren B,Li J F,et al. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy[J]. Chemical Communications, 2007( 34) : 3514-3534.
文章导航

/