欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

高比能电池新材料与安全性新技术研究进展 Ⅱ.基于多电子反应的高能量密度电极材料

  • 艾新平 ,
  • 杨汉西
展开
  • 湖北省化学电源材料与技术重点实验室,武汉大学化学与分子科学学院;

收稿日期: 2010-08-28

  修回日期: 2010-08-28

  网络出版日期: 2010-08-28

Multi-electron Redox Materials for High Energy Density Electrodes

  • AI Xin-ping ,
  • YANG Han-xi
Expand
  • ( Hubei Key Lab of Electrochemical Power Sources,College of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072,China

Received date: 2010-08-28

  Revised date: 2010-08-28

  Online published: 2010-08-28

摘要

正在崛起的新能源技术为化学电源的发展提供了巨大机遇,同时也提出了巨大的技术挑战:即在现有基础上大幅度提升能量和功率密度,以满足各个层次高效储电的要求.利用多电子反应电池体系是成倍提高化学电源能量密度的有效途径.本文以作者所在课题组的研究工作为主,简要介绍了几类典型的多电子电极反应,包括金属硼化物多电子氧化反应、合金储锂反应、高价金属化合物结构转化反应等,以及这些反应体系用于构建高能量密度电池的关键问题,并试图分析解决这些问题的可能技术途径.

本文引用格式

艾新平 , 杨汉西 . 高比能电池新材料与安全性新技术研究进展 Ⅱ.基于多电子反应的高能量密度电极材料[J]. 电化学, 2010 , 16(3) : 239 -243 . DOI: 10.61558/2993-074X.3351

Abstract

Various new energy technologies being developed require electrochemical energy batteries to have a real breakthrough in energy density and rate capability,which imposes a great challenge for electrochemists and materials chemists. Multi-electron redox reactions seem to open a promising avenue to create new batteries with dramatically enhanced energy densities. This paper describes simply our research works on the multi-electron redox systems,including metal boride anode,lithium alloying compounds and electrochemical conversion materials, and also discusses the problems hindering these systems for battery applications.

参考文献

[1]Licht S,Wang B H,Ghosh S.Energetic iron(VI)chem-istry:The super-iron battery[J].Science,1999,285:1039-1042. [2]Yang H X,Wang Y D,Ai X P,et al.Metal borides:competitive high capacity anode materials for aqueous primary batteries[J].Electrochem Solid-State Lett,2004,7:A212-A215. [3]Licht S,Yu X W,Qu D Y.A novel alkaline redox cou-ple:chemistry of the Fe6+/B2-super-iron boride battery[J].Chem Commun,2007:2753-2755. [4]Wang Y D,Ai X P,Cao Y L,et al.Exceptional electro-chemical activities of amorphous Fe-B and Co-B alloy powders used as high capacity anode materials[J].Electrochem Commun,2004,6:780-784. [5]Wang Y,Guang X Y,Cao Y L,et al.Electrooxidation and dischargeability of transition-metal borides as possi-ble anodic materials in neutral aqueous electrolytes[J].J Appl Electrochem,2009,39:1039-1044. [6]Licht S,Wu H M,Yu X W,et al.Renewable highest ca-pacity VB2/air energy storage[J].Chem Commun,2008:3257-3259. [7]Wang Y D,Ai X P,Yang H X.Electrochemical hydro-gen storage behaviors of ultrafine amorphous Co-B alloy particles[J].Chem Mater,2004,16(24):5194-5197. [8]Cao Y L,Zhou W C,Lia X Y,et al.Electrochemical hy-drogen storage behaviors of ultrafine Co-P particles pre-pared by direct ball-milling method[J].Electrochimica Acta,2006,51:4285-4290. [9]Feng R X,Dong H,Wang Y D,et al.A simple and high efficient direct borohydride fuel cell with MnO2-cata-lyzed cathode[J].Electrochem Commun,2005,7:449-452. [10]Yao C F,Yang H X,Zhuang L,et al.A preliminarystudy of direct borazane fuel cell[J].Journal of Power Sources,2007,165:125-127. [11]Liu B H,Li Z P.Current status and progress of direct borohydride fuel cell technology development[J].JPower Sources,2009,187:291-297. [12]Gao X P,Yang H X.Multi-electron reaction materials for high energy density batteries[J].Energy Environ Sci,2010,3:174-189.
文章导航

/