局域电场耦合Cl−固定策略提升海水氧还原反应性能
收稿日期: 2025-04-14
修回日期: 2025-05-21
录用日期: 2025-05-28
网络出版日期: 2025-06-03
Local Electric Fields Coupled with Cl− Fixation Strategy for Improving Seawater Oxygen Reduction Reaction Performance
#Yu-Rong Liu, Miao Zhang, Yan-Hui Yu and Ya-Lin Liu contributed equally in this work.
Received date: 2025-04-14
Revised date: 2025-05-21
Accepted date: 2025-05-28
Online published: 2025-06-03
开发适用于海水电解质的高性能氧还原反应(ORR)电催化剂是实现海水锌空气电池(SZABs)发展的关键。本文提出了一种在双金属单原子催化剂中构建局域电场耦合氯离子固定策略,所制备催化剂在海水电解质中表现出优异的ORR性能,其半波电位(E1/2)高达0.868 V,组装的SZABs最大功率密度(Pmax)达182 mW·cm−2,显著优于商用Pt/C催化剂(E1/2: 0.846 V;Pmax: 150 mW·cm−2)。原位表征和理论计算结果表明,铁位点比钴位点具有更强的氯离子吸附亲和力,能够在ORR过程中优先吸附海水中的氯离子,并通过同离子排斥效应构筑低氯离子浓度的局域微环境,从而抑制氯离子对钴活性中心的吸附和腐蚀,实现优异的催化稳定性。此外,铁-钴原子对之间的定向电荷迁移形成局域电场,优化了钴位点对含氧中间体的吸附能,进一步提升ORR催化活性。
刘育荣 , 张淼 , 于彦会 , 刘亚琳 , 李静 , 史晓东 , 康振烨 , 吴道雄 , 饶鹏 , 梁颖 , 田新龙 . 局域电场耦合Cl−固定策略提升海水氧还原反应性能[J]. 电化学, 2025 , 31(9) : 2504132 . DOI: 10.61558/2993-074X.3566
Development of robust electrocatalyst for oxygen reduction reaction (ORR) in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries (SZABs). Herein, constructing a local electric field coupled with chloride ions (Cl—) fixation strategy in dual single-atom catalysts (DSACs) was proposed, and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte, with a high half-wave potential (E1/2) of 0.868 V and a good maximum power density (Pmax) of 182 mW·cm−2 in the assembled SZABs, much higher than those of the Pt/C catalyst (E1/2: 0.846 V; Pmax: 150 mW·cm−2). The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl− adsorption affinity than the Co sites, and preferentially adsorbs Cl− in a seawater electrolyte during the ORR process, and thus constructs a low-concentration Cl− local microenvironment through the common-ion exclusion effect, which prevents Cl− adsorption and corrosion in the Co active centers, achieving impressive catalytic stability. In addition, the directional charge movement between Fe and Co atomic pairs establishes a local electric field, optimizing the adsorption energy of Co sites for oxygen-containing intermediates, and further improving the ORR activity.
| [1] | Wang H Y, Wang L, Ren J T, Tian W, Sun M, Feng Y, Yuan Z Y. Taking advantage of potential coincidence region: advanced self-activated/propelled hydrazine-assisted alkaline seawater electrolysis and Zn-hydrazine battery[J]. ACS Nano, 2023, 17(11): 10965-10975. https://doi.org/10.1021/acsnano.3c03095. |
| [2] | Tang Q J, Bai L, Zhang C, Meng R W, Wang L, Geng C N, Guo Y, Wang F F, Liu Y X, Song G S, Ling G W, Sun H T, Weng Z, Yang Q H. Molecular catalysts with electronic axial stretching for high-performance lean-oxygen seawater batteries[J]. Sci. Bull., 2023, 68(24): 3172-3180. https://doi.org/10.1016/j.scib.2023.09.049. |
| [3] | Zhan Y, Ding Z B, He F Lv X, Wu W F, Lei B, Liu Y, Yan X. Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte[J]. Chem. Eng. J., 2022, 443: 136456. https://doi.org/10.1016/j.cej.2022.136456. |
| [4] | Rao P, Liu Y R, Shi X D, Yu Y H, Zhou Y, Li R S, Liang Y, Wu D X, Li J, Tian X L, Miao Z P. Protection of fe single-atoms by fe clusters for chlorine-resistant oxygen reduction reaction[J]. Adv. Funct. Mater., 2024, 34: 2407121. https://doi.org/10.1002/adfm.202407121. |
| [5] | Chen X Q, Zheng X R, Yin Z X, Lu J D, Wang Y, Guo Y Y, Zhang J F, Wang H Z, Zhao Z W, Wu Y Q, Deng Y D. Pre-adsorption of chlorine enhances the oxyphilic property and oxygen reduction activity of Fe/Se-NC electrocatalyst in seawater electrolyte[J]. Chem. Eng. J., 2024, 482: 148856. https://doi.org/10.1016/j.cej.2024.148856. |
| [6] | Wu S Q, Liu X B, Mao H M, Cui T, Li B, Zhou G Z, Wang L. Realizing high-efficient oxygen reduction reaction in alkaline seawater by tailoring defect-rich hierarchical heterogeneous assemblies[J]. Appl. Catal. B: Environ., 2023, 330: 122634. https://doi.org/10.1016/j.apcatb.2023.122634. |
| [7] | Wang J Q, Tran D T, Chang K, Prabhakaran S, Zhao J, Kim D H, Kim N H, Lee J H. Hierarchical Ni@CNTs-bridged MoxC/Ni2P heterostructure micro-pillars for enhanced seawater splitting and Mg/seawater battery[J]. Nano Energy, 2023, 111: 108440. https://doi.org/10.1016/j.nanoen.2023.108440. |
| [8] | Wu S Q, Liu X B, Mao H M, Zhu J W, Zhou G Z, Chi J Q, Wu Z X, Wang L. Unraveling the tandem effect of nitrogen configuration promoting oxygen reduction reaction in alkaline seawater[J]. Adv. Energy Mater., 2024, 14 (24): 2400183. https://doi.org/10.1002/aenm.202400183. |
| [9] | Lu J D, Lu Q, Guo Y, Chen X Q, Yin Z X, Cao Y H, Guo Y Y, Zhang J F, Wang H Z, Wang Y, Zheng X R, Ozoemena K I, Deng Y D. Cobalt atom-cluster interactions synergistically enhance the activity of oxygen reduction reaction in seawater[J]. Energy Storage Mater., 2024, 65: 103093. https://doi.org/10.1016/j.ensm.2023.103093. |
| [10] | Wang A S, Gao S, Yan J G, Zhao C N, Yu M, Wang W C. Vacancy-modified bimetallic FeMoSx/CoNiPx heterostructure array for efficient seawater splitting and Zn-air battery[J]. J. Energy Chem., 2023, 81: 533-542. https://doi.org/10.1016/j.jechem.2023.02.029. |
| [11] | Zeng Y C, Li C Z, Li B Y, Liang J S, Zachman M J, Cullen D A, Hermann R P, Alp E E, Lavina B, Karakalos S, Lucero M, Zhang B Z, Wang M Y, Feng Z X, Wang G F, Xie J, Myers D J, Dodelet J P, Wu G. Tuning the thermal activation atmosphere breaks the activity-stability trade-off of Fe-N-C oxygen reduction fuel cell catalysts[J]. Nat. Catal., 2023, 6: 1215-1227. https://doi.org/10.1038/s41929-023-01062-8. |
| [12] | Xie F X, Cui X L, Zhi X, Yao D Z, Johannessen B, Lin T, Tang J N, Woodfield T B F, Gu L, Qiao S Z. A general approach to 3D-printed single-atom catalysts[J]. Nature Synth., 2023, 2: 129-139. https://doi.org/10.1038/s44160-022-00193-3. |
| [13] | Tian H, Song A L, Zhang P, Sun K A, Wang J J, Sun B, Fan Q H, Shao G J, Chen C, Liu H, Li Y D, Wang G X. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media[J]. Adv. Mater., 2023, 35: e2210714. https://doi.org/10.1002/adma.202210714. |
| [14] | Wei X Q, Song S J, Cai W W, Luo X, Jiao L, Fang Q, Wang X S, Wu N N, Luo Z, Wang H J, Zhu Z H, Li J, Zheng L R, Gu W L, Song W Y, Guo S J, Zhu C Z. Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway[J]. Chem, 2023, 9(1):181-197. https://doi.org/10.1016/j.chempr.2022.10.001. |
| [15] | Liu S G, Li Z J, Chang Y X, Kim M G, Jang H, Cho J, Hou L Q, Liu X. Substantial impact of built-in electric field and electrode potential on the alkaline hydrogen evolution reaction of Ru-CoP urchin arrays[J]. Angew. Chem. Int. Ed., 2024, 63(12): e202400069. https://doi.org/10.1002/anie.202400069. |
| [16] | Xu Y M, Mao Z X, Zhang J F, Ji J P, Zou Y, Dong M Y, Fu B, Hu M Q, Zhang K D, Chen Z Y, Chen S, Yin H J, Liu P R, Zhao H J. Strain-modulated Ru-O covalency in Ru-Sn oxide enabling efficient and stable water oxidation in acidic solution[J]. Angew. Chem., Int. Ed., 2024, 63(8): e202316029. https://doi.org/10.1002/ange.202316029. |
| [17] | Zhao X, Feng Q G, Liu M J, Wang Y C, Liu W, Deng D N, Jiang J B, Zheng X R, Zhan L S, Wang J X, Zheng H R, Bai Y, Chen Y B, Xiong X, Lei Y P. Built-in electric field promotes interfacial adsorption and activation of CO2 for C1 products over a wide potential window[J]. ACS Nano, 2024, 18(13): 9678-9687. https://doi.org/10.1021/acsnano.4c01190. |
| [18] | Tong K C, Xu L L, Yao H X, Wang X K, Zhang C H, Yang F, Chu L, Lee J, Jiang H Q, Huang M H. Hydrogen spillover bridged dual nano-islands triggered by built-in electric field for efficient and robust alkaline hydrogen evolution at ampere-level current density[J]. Nano Res., 2024, 17(6): 5050-5060. https://doi.org/10.1007/s12274-024-6520-x. |
| [19] | Chen W X, Wei W, Li F, Wang Y J, Liu M, Dong S, Cui J H, Zhang Y Y, Wang R, Ostrikov K, Zang S Q. Tunable built-in electric field in Ru nanoclusters-based electrocatalyst boosts water splitting and simulated seawater electrolysis[J]. Adv. Funct. Mater., 2024, 34(7): 310690. https://doi.org/10.1002/adfm.202310690. |
| [20] | Yang H Q, Wang B D, Kou S Q, Lu G L, Liu Z N. Mott-Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery[J]. Chem. Eng. J., 2021, 425: 131589. https://doi.org/10.1016/j.cej.2021.131589. |
| [21] | Lin Y Y, Liu K, Chen K J, Xu Y, Li H M, Hu J H, Lu Y R, Chan T S, Qiu X Q, Fu J W, Liu M. Tuning charge distribution of FeN4 via external N for enhanced oxygen reduction reaction[J]. ACS Catal., 2021, 11(10): 6304-6315. https://doi.org/10.1021/acscatal.0c04966. |
| [22] | Rao P, Han X Q, Sun H C, Wang F Y, Liang Y, Li J, Wu D X, Shi X D, Kang Z Y, Miao Z P, Deng P L, Tian X L. Precise synthesis of dual-single-atom electrocatalysts through pre-coordination-directed in situ confinement for CO2 reduction[J]. Angew. Chem. Int. Ed., 2025, 64(3): e202415223. https://doi.org/10.1002/ange.202415223. |
| [23] | Zhang Y X, Zhang S B, Huang H L, Liu X L, Li B B, Lee Y Y, Wang X D, Bai Y, Sun M Z, Wu Y F, Gong S Y, Liu X W, Zhuang Z B, Tan T, Niu Z Q. General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach[J]. J. Am. Chem. Soc., 2023, 145(8): 4819-4827. https://doi.org/10.1021/jacs.2c13886. |
| [24] | Zhu P, Xiong X, Wang D S, Li Y D. Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis[J]. Adv. Energy Mater., 2023, 13(39): 2300884. https://doi.org/10.1002/aenm.202300884. |
| [25] | Rao P, Deng Y J, Fan W J, Luo J M, Deng P L, Li J, Shen Y J, Tian X L. Movable type printing method to synthesize high-entropy single-atom catalysts[J]. Nat. Commun., 2022, 13: 5071. https://doi.org/10.1038/s41467-022-32850-8. |
| [26] | Rao P, Wu D X, Wang T J, Li J, Deng P L, Chen Q, Shen Y J, Chen Y, Tian X L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction[J]. eScience, 2022, 2(4): 399-404. https://doi.org/10.1016/j.esci.2022.05.004. |
| [27] | Zhang H, Chen H C, Feizpoor S, Li L, Zhang X Y, Xu X M, Zhuang Z B, Li Z, Hu W L, Snyders R, Wang D, Wang C. Tailoring oxygen reduction reaction kinetics of Fe-N-C catalyst via spin manipulation for efficient zinc-air batteries[J]. Adv. Mater., 2024, 36(25): 2400523. https://doi.org/10.1002/adma.202400523. |
| [28] | Yu Y H, Rao P, Feng S Y, Chen M, Deng P L, Li J, Miao Z P, Kang Z Y, Shen Y J, Tian X L. Atomic coclusters for efficient oxygen reduction reaction[J]. Acta Phys. Chim. Sin., 2023, 39(8): 2210039. https://doi.org/10.3866/PKU.WHXB202210039. |
| [29] | Zhao X, Liu M J, Wang Y C, Xiong Y, Yang P Y, Qin J Q, Xiong X, Lei Y P. Designing a built-in electric field for efficient energy electrocatalysis[J]. ACS Nano, 2022, 16(12): 19959-19979. https://doi.org/10.1021/acsnano.2c09888. |
| [30] | Chen D, Lu R H, Yu R H, Dai Y H, Zhao H Y, Wu D L, Wang P Y, Zhu J W, Pu Z H, Chen L, Yu J, Mu S C. Work-function-induced interfacial built-in electric fields in os-osse2 heterostructures for active acidic and alkaline hydrogen evolution[J]. Angew. Chem. Int. Ed., 2022, 61(36): e202208642. https://doi.org/10.1002/anie.202208642. |
| [31] | Liu Y R, Feng S Y, Shan L T, Zhu Y S, Zhou C C, Li J, Shi X D, Kang Z Y, Tian X L, Rao P. Localized negatively charged interfaces for seawater electrolyte-based zinc-air batteries[J]. Adv. Funct. Mater., 2025, 35(26): 202422874. https://doi.org/10.1002/adfm.202422874. |
/
| 〈 |
|
〉 |