欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

离子液体中的真空一致电化学与氧化物外延相结合

  • 松本雄司
展开
  • 东北大学工程学院,仙台市青葉区荒卷字青葉 6-6-7, 980-8579,日本

收稿日期: 2024-12-24

  修回日期: 2025-04-13

  录用日期: 2025-04-24

  网络出版日期: 2025-04-24

Vacuum Consistent Electrochemistry in Ionic Liquid Combined with Oxide Epitaxy

  • Yuji Matsumoto
Expand
  • School of Engineering, Tohoku University, 6-6-7, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
*Yuji Matsumoto, E-mail address: y-matsumoto@tohoku.ac.jp

Received date: 2024-12-24

  Revised date: 2025-04-13

  Accepted date: 2025-04-24

  Online published: 2025-04-24

摘要

我们将最先进“真空一致电化学”技术引入到氧化物与离子液体(IL)界面的研究中。脉冲激光沉积(PLD)是实现纳米级制备高质量氧化物外延薄膜的强大而最精细的技术之一。另一方面,电化学是一种简单、非常灵敏且无损的固液界面分析技术。为了确保此类外延氧化物薄膜以及块状氧化物单晶与IL接口实验的可重复性,我们采用了自制的以IL为电解质的PLD电化学(EC)系统。该系统允许进行从制备定义明确的氧化物电极表面到其电化学分析的全真空实验。研究主题包括氧化物自身特性(如载流子密度和相对介电常数)的电化学评估,以及与IL接触的氧化物的界面特性(如平带电势和双电层电容),最后是对全固态电化学的未来展望。

本文引用格式

松本雄司 . 离子液体中的真空一致电化学与氧化物外延相结合[J]. 电化学, 2025 , 31(6) : 2415004 . DOI: 10.61558/2993-074X.3541

Abstract

We introduce our state-of-the art of “vacuum consistent electrochemistry” to an investigation of the interfaces between oxides and ionic liquid (IL). Pulsed laser deposition (PLD) has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films. On the other hand, electrochemistry is a simple, very sensitive, and non-destructive analysis technique for solid-liquid interfaces. To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films, as well as bulk oxide single-crystals, with IL, we employ a home-built PLD-electrochemical (EC) system with IL as an electrolyte. The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses. The topics include electrochemical evaluations of the oxide’s own properties, such as carrier density and relative permittivity, and the interfacial properties of oxides in contact with IL, such as flat band potential and electric double layer (EDL) capacitance, ending with future perspectives in all-solid-state electrochemistry.

参考文献

[1] Ishikawa R M, Hubbard A T. Study of platinum electrodes by means of thin layer electrochemistry and low-energy electron diffraction Part I. Electrode surface structure after exposure to water and aqueous electrolytes[J]. J. Electroanal. Chem., 1976, 69: 317-338.
[2] Clavilier J, Faure R, Guinet G, Durand J. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes[J]. J. Electroanal. Chem., 1980, 107: 205-209.
[3] Hammond J S, Winograd N. XPS spectroscopic study of potentiostatic and galvanosatic oxidation of Pt electrodes in H2SO4 and HClO4[J]. J. Electroanal. Chem., 1977, 78: 55-69.
[4] EI-Jawad M, Chemin J L, Gilles B, Maillard F. A portable transfer chamber for electrochemical measurements on electrodes prepared in ultra-high vacuum[J]. Rev. Sci. Instrum., 2013, 84(6): 064101.
[5] Wadayama T, Todoroki N, Yamada Y, Sugawara T, Miyamoto K, Iijima Y. Oxygen reduction reaction activities of Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy[J]. Electrochem. Commun., 2010, 12(8): 1112-1115.
[6] Hubbard A T, Stickney J L, Sorinaga M P, Chia V K F, Rosasco S D, Schardt B C, Solomun T, Song D, White J H, Wieckowski A. Electrochemical process at well-defined surfaces[J]. J. Electroanal. Chem. 1984, 168(1-2): 43-66.
[7] Taniguchi M, Kuzembaev E, Tanaka K. A mimic model of Pt-Rh catalyst prepared by electrochemical deposition of Rh on the Pt(100) surface[J]. Suf. Sci. 1993, 290(3): L711-L717.
[8] Attard G A, Price R, Al-Akl A. Palladium adsorption on Pt(111): A combined electrochemical and ultra-high vacuum study[J]. Electrochim. Acta, 1994, 39(11-12): 1525-1530.
[9] Yamada T, Batina N, Itaya K. Structure of electrochemically deposited Iodine adlayer on Au(111) studied by ultrahigh-vacuum instrumentation and in-situ STM[J]. J. Phys. Chem., 1995, 99(21): 8817-8823.
[10] Sung Y E, Chrzanowski W, Zolfaghari A, Jerkiewicz G, Wieckowski A. Structure of chemisorbed sulfur on a Pt(111) electrode[J]. J. Am. Chem. Soc., 1997, 119(1): 194-200.
[11] Reniers F. The development of a transfer mechanism between UHV and electrochemistry environments[J]. J. Phys. D: Appl. Phys., 2002, 35(21): R169-R188.
[12] Takata S, Tanaka R, Hachiya A, Matsumoto Y. Nanoscale oxygen nonstoichiometry in epitaxial TiO2 films grown by pulsed laser deposition[J]. J. Appl. Phys., 2011, 110(10): 103513.
[13] Ogasawara H, Sawatari Y, Inukai J, Ito M. Adsorption of bisulfate anion on a Pt(111) electrode: a comparison of in-situ and ex-situ IRAS[J]. J. Electroanal. Chem., 1993, 358(1-2): 337-342.
[14] Buchner F, Fuchs S, Behm R J. UHV preparation and electrochemical/-catalytic properties of well-defined Co- and Fe-containing unary and binary oxide model cathodes for the oxygen reduction and oxygen evolution reaction in Zn-air batteries[J]. J. Electroana. Chem., 2021, 896(SI): 115497.
[15] Schnaidt J, Beckord S, Engstfeld A K, Klein J, Brimaud S, Behm R J. A combined UHV-STM flow cell set-up for electrochemical/electrocatalytic studies of structurally well-defined UHV prepared model electrodes[J]. Phys. Chem. Chem. Phys., 2017, 19(6): 4166-4178.
[16] Kerger P, Vogel D, Rohwerder M. Electrochemistry in ultra-high vacuum: The fully transferrable ultra-high vacuum compatible electrochemical cell[J]. Rev. Sci. Instrum., 2018, 89(11): 113102.
[17] Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Z. Phys. B - Condensed Matter, 1986, 64(2): 189-193.
[18] Ashfold M N R, Claeyssens F, Fuge G M, Henley S J. Pulsed laser ablation and deposition of thin films[J]. Chem. Soc. Rev., 2004, 33(1): 23-31.
[19] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M, Koinuma H. Atomic control of the SrTiO3 crystal surface[J]. Science, 1994, 266(5190): 1540-1542.
[20] Takahashi R, Tsuruta Y, Yonezawa Y, Ohsawa T, Koinuma H, Matsumoto Y. Ceramic liquid droplets stabilized in vacuum[J]. J. Appl. Phys., 2007, 101(3): 033511.
[21] Yoshimoto M, Maeda T, Ohnishi T, Koinuma H, Ishiyama O, Shinohara M, Kubo M, Miura R, Miyamoto A. Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication[J]. Appl. Phys. Lett., 1995, 67(18): 2615-2617.
[22] Li G, Ohta J, Okamoto K, Kobayashi A, Fujioka H. Room-temperature epitaxial growth of GaN on atomically flat MgAl2O4 substrates by pulsed-laser deposition[J]. Jpn. J. Appl. Phys., 2006, 45(17-19): L457-L459.
[23] Honke T, Fujioka H, Ohta J, Oshima M. InN epitaxial growths on Yttria stabilized zirconia (111) step substrates[J]. J. Vac. Sci. Technol., 2004, 22(6): 2487-2489.
[24] Zhao X R, Lu W Q, Okazaki S, Konishi Y, Akahane K, Ishibashi T, Sato K, Matsumoto Y, Koinuma H, Hasegawa T. High-throughput characterization of BixY3-xFe5O12combinatorial thin films by magneto-optical imaging technique[J]. Appl. Surf. Sci., 2006, 252(7): 2628-2633.
[25] Yamamoto Y, Nakajima K, Ohsawa T, Matsumoto Y, Koinuma H. Preparation of atomically smooth TiO2 single crystal surfaces and their photochemical property[J]. Jpn. J. Appl. Phys., 2005, 44(16-19): L511-L514.
[26] Kobayashi A, Fujioka H, Ohta J, Oshima M. Room temperature layer by layer growth of GaN on atomically flat ZnO[J]. Jpn. J. Appl. Phys., 2004, 43(1A-B): L53-L55.
[27] Yamamoto Y, Matsumoto Y, Koinuma H. Homo-epitaxial growth of rutile TiO2 film on step and terrace structured substrate[J]. Appl. Surf. Sci., 2004, 238(1-4): 189-192.
[28] Sun Y, Wu C R, Wang F, Bi R H, Zhuang Y B, Liu S, Chen M S, Zhang K H L, Yan J W, Mao B W, Tian Z Q, Cheng J. Step-induced double-row pattern of interfacial water on rutile TiO2(110) under electrochemical conditions[J]. Chem. Sci., 2024, 15(31): 12264-12269.
[29] Shiraishi N, Kato Y, Arai H, Tsuchimine N, Kobayashi S, Mitsuhashi M, Soga M, Kaneko S, Yoshimoto M. Room-temperature epitaxial growth of (Li,Ni)O thin film with Li content up to 60 mol%[J]. Jpn. J. Appl. Phys., 2010, 49(10): 108001.
[30] Kursumovic A, Prestigiacomo J, de h-Ora M, Li W, Feighan J, Smolyaninova V, Smolyaninov I, Osofsky M, MacManus-Driscoll J L. Optimisation of pulsed laser deposited Ba1-xKxBiO3 thin films with tunable superconducting properties by control of K doping level, x[J]. Superconductivity, 2024, 11: 100115.
[31] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y. Superconductivity in an infinite-layer nickelate[J]. Nature, 2019, 572(7771): 624-627.
[32] Norton D P, Goyal A, Budai J D, Christen D K, List F A. Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): An approach to superconducting tapes with high critical current density[J]. Science, 1996, 274(5288): 755-757.
[33] Yun K S, Choi B D, Matsumoto Y, Song J H, Kanda N, Itoh T, Kawasaki M, Chikyow T, Ahmet P, Koinuma H. Vapor-liquid-solid tri-phase pulsed-laser epitaxy of RBa2Cu3O7-y single-crystal films[J]. Appl. Phys. Lett., 2002, 80(1): 61-63.
[34] Mao X L, Berdahl P, Russo R E, Liu H B, Ho J C. Bi-Pb-Sb-Sr-Ca-Cu-O superconducting thin films deposited on Ni-based alloy with yttria-stabilized zirconia intermediate layers[J]. Physica C, 1991, 183(1-3): 167-171.
[35] Kimura R, Kaminaga K, Kobayashi T, Cho Y, Maruyama S, Maeda A, Matsumoto Y. Elevating the superconducting temperature in epitaxially-stabilized rock-salt NbO[J]. Chem. Mater., 2024, 36(10): 5028-5036.
[36] Winiger J, Kwllwe K, Moor D, Baumann M, Kim D, Chelladural D, Kohli M, Blatter T, Denervaud E, Fedoryshyn Y, Koch U, Pane S, Grange R, Leuthold J. PLD epitaxial thin-film BaTiO3 on MgO - dielectric and electro-optic properties[J]. Adv. Mater. Interfaces, 2024, 11(1): 2300665.
[37] Abid A Y, Sun Y W, Hou X, Tan C B, Zhong X L, Zhu R X, Chen H Y, Qu K, Li Y H, Wu M, Zhang J M, Wang J B, Liu K H, Bai X D, Yu D P, Ouyang X P, Wang J, Li J Y, Gao P. Creating polar antivortex in PbTiO3/SrTiO3 superlattice[J]. Nat. Commun., 2021, 12(1): 2054.
[38] Kumari S, Mottaghi N, Huang C Y, Trappen R, Bhandari G, Yousefi S, Cabrera G, Seehra M. S, Holcomb M B. Effects of oxygen modification on the structural and magnetic properties of highly-epitaxial La0.7Sr0.3MnO3 (LSMO) thin films[J]. Sci. Rep., 2020, 10(1): 3659.
[39] Thong P D, Rijnders G, Blank D H A. Stress-induced magnetic anisotropy of CoFe2O4 thin films using pulsed laser deposition[J]. J. Magn. Magn. Mater., 2007, 310(2): 2621-2623.
[40] Nikam S M, Sharma A, Rahaman M, Teli A M, Mujawar S H, Zahn D R T, Patil P S, Sahoo S C, Salvan G, Patil P B. Pulsed laser deposited CoFe2O4 thin films as supercapacitor electrodes[J]. RSC Adv., 2020, 10(33): 19353-19359.
[41] Hirayama M, Sonoyama N, Ito M, Minoura M, Mori D, Yamada A, Tamura K, Miyazaki J, Kanno R. Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode[J]. J. Electrochem. Soc., 2007, 154(11): A1065.
[42] Ohnishi T, Hang B T, Xu X, Osada M, Takada K. Quality control of epitaxial LiCoO2 thin films grown by pulsed laser deposition[J]. J. Mater. Res., 2010, 25(10): 1886-1889.
[43] Haruta M, Shiraki S, Suzuki T, Kumatani A, Ohsawa T, Takagi Y, Shimizu R, Hitosugi T. Negligible “negative space-charge layer effects” at oxide-electrolyte/electrode interfaces of thin-film batteries[J]. Nano Lett., 2016, 15(3): 1498-1502.
[44] Ohsawa T, Nakajima K, Matsumoto Y, Koinuma H. Combinatorial discovery of anomalous substrate effect on the photochemical properties of transition metal-doped epitaxial SrTiO3 heterostructures[J]. Appl. Surf. Sci. 2006, 252(7): 2603-2607.
[45] Hachiya A, Takata S, Komuro Y, Matsumoto Y. Effects of V-ion doping on the photoelectrochemical properties of epitaxial TiO2(110) thin films on Nb-doped TiO2(110) single crystals[J]. J. Phys. Chem. C, 2012, 116(32): 16951-16956.
[46] Kawasaki S, Takahashi R, Yamamoto T, Kobayashi M, Kumigashira H, Yoshinobu J, Komori F, Kudo A, Lippmaa M. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode[J]. Nat. Comm., 2016, 7: 11818.
[47] Konno R, Maruyama S, Kosaka T, Katoh R, Takahashi R, Kumigashira H, Ichikuni N, Onishi H, Matsumoto Y. Artificially designed compositionally graded Sr-doped NaTaO3 single-crystalline thin films and the dynamics of their photoexcited electron-hole pairs[J]. Chem. Mater., 2021, 33(1): 226-233.
[48] Wilkes J S, Zaworotko M J J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Chem. Soc. Chem. Commun., 1992, 13: 965-967.
[49] Hayes R, Warr G G, Atkin R. Structure and nanostructure in ionic liquids[J]. Chem. Rev., 2015, 115(13): 6357-6426.
[50] Micaelo N M, Baptista A M, Soares C. M. Parametrization of 1-Butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field[J]. J. Phys. Chem. B, 2006, 110(29): 14444-14451.
[51] Ho?fft O, Bahr S, Himmerlich M, Krischok S, Schaefer J A, Kempter V. Electronic structure of the surface of the ionic liquid [EMIM][Tf2N] studied by metastable impact electron spectroscopy (MIES), UPS, and XPS[J]. Langmuir, 2006, 22(17): 7120-7123.
[52] Armstrong J P, Hurst C, Jones R G, Licence P, Lovelock K R J, Satterley C J, Villar-Garcia I J. Vaporization of ionic liquids[J]. Phys. Chem. Chem. Phys., 2007, 9(8): 982-990.
[53] Kuwabata S, Kongkanand A, Oyamatsu D, Torimoto T. Observation of ionic liquid by scanning electron microscope[J]. Chem. Lett. 2006, 35(6): 600-601.
[54] Buchner F, Forster-Tonigold K, Uhl B, Alwast D, Wagner N, Frank-hondeh H, Gro? A, Behm R J. Toward the microscopic identification of anions and cations at the ionic liquid Ag(111) interface: A combined experimental and theoretical investigation[J]. ACS Nano, 2013, 7(9): 7773-7784.
[55] Chen S, Kobayashi K, Kitaura R, Miyata Y, Shinohara H. Direct HRTEM observation of ultrathin freestanding ionic liquid film on carbon nanotube grid[J]. ACS Nano, 2011, 5(6): 4902-4908.
[56] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett., 1964, 4: 89-91.
[57] Lee C D, Park C, Lee H J, Lee K S, Park S J, Noh S K, Koguchi N. Fabrication of self-assembled GaAs/AlGaAs quantum dots by low-temperature droplet epitaxy[J]. Jpn. J. Appl. Phys., 1998, 37(12B): 7158-7160.
[58] Koguchi N, Takahashi S, Chikyow T. New MBE growth method for InSb quantum well boxes[J]. J. Cryst. Growth, 1991, 111(1-4): 688-692.
[59] No H N, Wu S T. The influences of temperature and residual gas on the wettability of aluminum melt on sapphire[J]. Jpn. J. Appl. Phys., 1998, 37(1): 274-278.
[60] Bradley L C, Gupta M. Microstructured films formed on liquid Substrates via initiated chemical vapor deposition of cross-linked polymers[J]. Langmuir, 2015, 31(29): 7999-8005.
[61] Voigt M, Dorsfeld S, Volz A, Sokolowski M. Nucleation and growth of molecular organic crystals in a liquid film under vapor deposition[J]. Phys. Rev. Lett., 2003, 91(2): 026103.
[62] Takeyama Y, Maruyama S, Matsumoto Y. Growth of single-crystal phase pentacene in ionic liquids by vacuum deposition[J]. Cryst. Growth & Des., 2011, 11(6): 2273-2278.
[63] Horike S, Koshiba Y, Misaki M, Ishida K. Crystal growth of rubrene in ionic liquids by vacuum vapor deposition[J]. Jpn. J. Appl. Phys, 2014, 53(5): 05FT03.
[64] Costa J C S, Campos R M, Castro A C M, Farinha A F M, Olivelria G N P, Araüjo J P, Santos L M N B F. The effect of onic liquids on the nucleation and growth of perylene films obtained by vapor deposition[J]. CrystEngComm, 2023, 25(6): 913-924.
[65] Takeyama Y, Maruyama S, Taniguchi H, Itoh M., Ueno K., Matsumoto Y. Ionic liquid-mediated epitaxy of high-quality C60 crystallites in a vacuum[J]. CrystEngComm, 2012, 14(15): 4939-4945.
[66] Torimoto T, Okazaki K, Kiyama T, Hirahara K, Tanaka N, Kuwabata S. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles[J]. Appl. Phys. Lett., 2006, 89(24): 243117.
[67] Kaneko T, Baba K, Hatakeyama R. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode[J]. J. Appl. Phys., 2009, 105(10): 103306.
[68] Ono S, Seki S, Hirahara R, Tominari Y, Takeya J. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids[J]. Appl. Phys. Lett., 2008, 92(10): 103313.
[69] Ue M, Takeda M, Toriumi A, Kominato A, Hagiwara R, Ito Y. Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors[J]. J. Electrochem. Soc., 2003, 150(4): A499-A502.
[70] Khorsandi D, Zarepour A, Rezazadeh I, Ghomi M, Ghanbari R, Zarrabi A, Esfahani F T, Mojahed N, Baghayer M, Zare E N. Ionic liquid-based materials for electrochemical biosensing[J]. Clin. Transl. Disc., 2022, 2(3): e127.
[71] Sakaebe H, Matsumoto H. N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI) - Novel electrolyte base for Li battery[J]. Electrochem. Commun., 2003, 5(7): 594-598.
[72] Sch?mer M, Rothg?ngel P, Mitl?nder K, Wisser D, Thommes M, Haumann M. Gas-phase hydroformylation using supported ionic liquid phase (SILP) catalysts - influence of support texture on effective kinetics[J]. ChemCatChem, 2021, 13(19): 4192-4200.
[73] Steinrück H P, Wasserscheid P. Ionic liquids in catalysis[J]. Catalysis Lett., 2015, 145(1): 380-397.
[74] Harada A, Yamaoka H, Ogata R, Watanabe K, Kinoshita K, Kishida S, Nokami T, Itoh T. Enhanced stability of the HfO2 electrolyte and reduced working voltage of a CB-RAM by an ionic liquid[J]. J. Mater. Chem. C, 2015, 3(27): 6966-6969.
[75] Widegren J A, Laesecke A, Magee J W. The effect of dissolved water on the viscosities of hydropheric room-temperature ionic liquids[J]. Chem. Commun., 2005, 12: 1610-1612.
[76] Taylor A W, Qiu F, Villar-Garcia I J, Licence P. Spectroelectrochemistry at ultrahigh vacuum: in-situ monitoring of electrochemically generated species by X-ray photoelectron spectroscopy[J]. Chem. Commun., 2009, 39: 5817-5819.
[77] Wibowo R, Aldous L, Jacobs R M J, Manan N S A, Compton R. G. Monitoring potassium metal electrodeposition from an ionic liquid using in-situ electrochemical-X-ray photoelectron spectroscopy[J]. Chem. Phys. Lett., 2011, 509(1-3): 72-76.
[78] Weingarth D, Foelske-Schmitz A, Wokaun A, Ko?tz R. In-situ electrochemical XPS study of the Pt/[EMIM][BF4] system[J]. Electrochem. Comm., 2011, 13(6): 619-622.
[79] Arimoto S, Oyamatsu D, Torimoto T, Kuwabata S. Development of in-situ electrochemical scanning electron microscopy with ionic liquids as electrolytes[J]. ChemPhysChem., 2008, 9(5): 763-767.
[80] Arimoto S, Kageyama H, Torimoto T, Kuwabata S. Development of in-situ scanning electron microscope system for real time observation of metal deposition from ionic liquid[J]. Electrochem. Comm., 2008, 10(12): 1901-1904.
[81] Watanabe K, Maruyama S, Matsumoto Y. p-Si(111):H/ionic liquid interface investigated through a combination of electrochemical measurements and reflection high energy[J]. Chem. Phys. Lett., 2016, 655: 6-10.
[82] Iwahori K, Watanabe S, Kawai M, Kobayashi K, Yamada H, Matsushige K. Effect of water adsorption on microscopic friction force on SrTiO3(001)[J]. J. Appl. Phys. 2003, 93(6): 3223-3227.
[83] Yamasaki T, Ueno K, Tsukazaki A, Fukumura T, Kawasaki M. Observation of anomalous Hall effect in EuO epitaxial thin films grown by a pulse laser deposition[J]. Appl. Phys. Lett., 2011, 98(8): 082116.
[84] Mairoser T, Mundy J A, Melville A, Hodash D, Cueva P, Held R, Glavic A, Schubert J, Muller D A, Schlom D G, Schmehl A. High-quality EuO thin films the easy way via topotactic transformation[J]. Nat. Commun., 2015, 6: 7716.
[85] Takahashi C, Kanai M, Maruyama S, Matsumoto Y. Vacuum electrochemistry approach to investigate electrical double-layer capacitances of ionic liquid for epitaxial thin-film electrodes of TiO2 and SrO on niobium-doped (001)SrTiO3[J]. ChemElectroChem, 2020, 7(15): 3253-3259.
[86] Takahashi R, Matsumoto Y, Ohsawa T, Lippmaa M, Kawasaki M, Koinuma H. Growth dynamics of the epitaxial SrO film on SrTiO3(001)[J]. J. Cryst. Growth, 2002, 234(2-3): 505-508.
[87] Young K F, Frederikse H P R. Compilation of the static dielectric constant of inorganic solids[J]. J. Phys. Chem. Ref. Data, 1973, 2: 313-410.
[88] Sano Y, Kaminaga K, Maruyama S, Matsumoto Y. Ferromagnetic semiconductor EuO thin films characterized by vacuum electrochemical process with ionic liquid[J]. Mat. Sci. Semicon. Proc., 2024, 181: 108629.
[89] Vattuone L, Boragno C, Pupo M, Restelli P, Rocca M, Valbusa U. Azimuthal dependence of sticking probability of O2 on Ag(110)[J]. Phys. Rev. Lett., 1994, 72(4): 510-513.
[90] Imai A, Katayama M, Maruyama S, Nishikawa H, Wada T, Kimura H, Fukuhara M, Takemoto T, Inoue A, Matsumoto Y. Improved wettability of Sn-based solder over the Cu60Zr30Ti10 bulk metallic glass surface[J]. J. Mater. Res., 2009, 24(9): 2931-2934.
[91] Matsumoto Y, Takata S, Tanaka R, Hachiya A. Electrochemical impedance analysis of electric field dependence of the permittivity of SrTiO3 and TiO2 single crystals[J]. J. Appl. Phys., 2011, 109(1): 014112.
[92] Matsumoto Y, Miura Y, Takata S. Thickness-dependent flat band potential of anatase TiO2(001) epitaxial films on Nb:SrTiO3(001) investigated by UHV-electrochemistry approach[J]. J. Phys. Chem. C, 2016, 120(3): 1472-1477.
[93] Axe J D. Infrared dielectric dispersion in divalent europium chalcogenides[J]. J. Phys. Chem. Solid., 1969, 30: 1403-1406.
[94] Guntherodt G. Optical properties and electronic structure of europium chalcogenides[J]. Phys. Condens. Matter, 1974, 18: 37-78.
[95] Vijh A K. Directions in electrochemical physics[J]. Mater. Chem. Phys., 1986, 14(2): 97-112.
[96] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.
[97] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y. MgxZnO1-x as a II-VI widegap semiconductor alloy[J]. Appl. Phys. Lett., 1998, 72(19): 2466-2468.
[98] Kanai M, Watanabe K, Maruyama S, Matsumoto Y. Ionic liquid/ZnO(000-1) single crystal and epitaxial film interfaces studied through a combination of electrochemical measurements and a pulsed laser deposition process under vacuum[J]. Phys. Chem. Chem. Phys., 2019, 21: 25506-25512.
[99] Miura Y, Takata S, Matsumoto Y. Nondestructive and repeatable capacitance-voltage and current-voltage measurements across the oxide/electrolyte interface by UHV-electrochemistry approach[J]. Appl. Phys. Express, 2014, 7(9): 095802.
[100] Nozik A J, Memming R. Physical chemistry of semiconductor-liquid interfaces[J]. J. Phys. Chem., 1996, 100(31): 13061-13078.
[101] Beranek R. (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials[J]. Adv. Phys. Chem., 2011: 786759.
[102] Nakamura R, Ohashi N, Imanishi A, Osawa T, Matsumoto Y, Koinuma H, Nakato N. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO2 (rutile) surfaces[J]. J. Phys. Chem. B., 2005, 109(5): 1648-1651.
[103] Phillips J C. Ionicity of the chemical bond in crystals[J]. Rev. Mod. Phys., 1970, 42: 317-356.
[104] Ding L L, Wu L Q, Ge X S, Du Y N, Qian J J, Tang G D, Zhong W. Study of average valence and valence electron distribution of several oxides using X-ray photoelectron spectra[J]. Results in Physics, 2018, 9: 866-870.
[105] Maruyama S, Prastiawan I B H, Toyabe K, Higuchi Y, Koganezawa T, Kubo M, Matsumoto Y. Ionic conductivity in ionic liquid nano thin films[J]. ACS Nano, 2018, 12(10): 10509-10517.
[106] Maruyama S, Ishikawa Y, Mitsui T, Aoki K, Matsumoto Y. Surface thermal fluctuation spectroscopy study of ultra-thin ionic liquid films on quartz[J]. Appl. Phys. Express, 2021, 14(7): 075503.
[107] Cho J H, Lee J, Xia Y, Kim B S, He Y, Renn M J, Lodge T P, Frisbie C D. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic[J]. Nat. Mater., 2008, 7(11): 900-906.
[108] Watanabe H, Takazawa R, Takahashi R, Maruyama S, Matsumoto Y. Nanogels constituted of polyurea filled with an ionic liquid as an electrolyte for electric double layer transistors[J]. ACS Appl. Nano Mater., 2020, 3(10): 9610-9615.
[109] Komatsu H, Tanaka M, Kaminaga K, Maruyama S, Matsumoto Y. Electric double layer action of high-quality ionic liquid crystal thin films[J]. Chem. Lett., 2022, 51(2): 162-165.
[110] Zhang W, Maruyama S, Kaminaga K, Matsumoto Y. Ionic liquid crystal film gated electric double layer transistors[J]. ACS Appl. Electron. Mater., DOI: 10.1021/acsaelm.5c00728.
[111] Zhang W, Komatsu H, Maruyama S, Kaminaga K, Matsumoto Y. Ionic liquid crystal thin film as switching layer in nonvolatile resistive memory[J]. ACS Appl. Mater. Interfaces, 2023, 15(45): 52806-52813.
[112] Zhang W, Maruyama S, Kaminaga K, Matsumoto Y. Near room temperature multilevel resistive switching memory with thin film ionic liquid crystal[J]. l. J. Mater. Chem. C, 2024, 12: 9321-9327.
文章导航

/