化学镀钴过程中添加剂糖精对结晶取向的调控
收稿日期: 2024-12-23
修回日期: 2025-02-23
录用日期: 2025-03-28
网络出版日期: 2025-03-28
Effect of Saccharin on Crystallization Behavior of Electroless Cobalt Plating
Received date: 2024-12-23
Revised date: 2025-02-23
Accepted date: 2025-03-28
Online published: 2025-03-28
在化学镀钴过程中,我们发现添加剂糖精的加入可明显改变化学镀钴层表面的形貌、织构取向及镀层的导电性。研究表明,当糖精添加量为3 mg·L-1时,钴镀层由无序大晶粒转变为蜂巢状结构,具有密排六方(HCP)钴晶体的(002)择优取向,其电阻率降低至14.4 μΩ·cm,经过热处理后,电阻率进一步降低至10.7 μΩ·cm,这对于其在芯片中的应用具有重要价值。当糖精浓度升高时,晶粒逐渐细化,呈现“石林”状结构,择优取向不变,而糖精的加入在一定程度上提高了镀钴膜的纯度。通过密度泛函理论对钴镀层结晶行为的研究表明,糖精分子可吸附于钴密排晶面的特定c位点,抑制abc堆积方式生长,诱导晶体按ab堆积方式生长,从而实现HCP(002)晶面的择优生长。
罗雨欣 , 王静静 , 王露 , 闫子一 , 马艺 , 薄鑫 , 党静霜 , 王增林 . 化学镀钴过程中添加剂糖精对结晶取向的调控[J]. 电化学, 2025 , 31(8) : 2412231 . DOI: 10.61558/2993-074X.3533
In the process of electroless cobalt plating, the saccharin additive can significantly change the surface morphology, texture orientation, and conductivity of the cobalt coating layer. When the amount of saccharin was 3 mg·L-1, the cobalt coating transformed from disordered large grains to a honeycomb structure, with a preferred orientation of (002) facet on hexagonal close-packed (HCP) cobalt crystals. The resistivity of the cobalt film decreased to 14.4 μΩ·cm, and further decreased to 10.7 μΩ·cm after the annealing treatment. When the concentration of saccharin was increased, the grain size was gradually refined and a “stone forest” structure was observed, with the preferred orientation remaining unchanged. The addition of saccharin also slightly improves the purity of cobalt coating to a certain extent. Through the study of the crystallization behavior of cobalt electroless plating, saccharin molecules can adsorb to specific c-sites on the cobalt dense crystal plane, inhibiting the growth of abc stacking arrangement and inducing the crystal growth in ab stacking mode, thereby achieving optimal growth of HCP (002) texture.
Key words: Electroless cobalt plating; Additives; Saccharin; Crystallization behavior
[1] | Sun T, Yao B, Warren A P, Barmak K, Toney M F, Peale R E, Coffey K R. Surface and grain-boundary scattering in nanometric Cu films[J]. Phys. Rev. B., 2010, 81(15):155454. https://doi.org/10.1103/PhysRevB.81.155454. |
[2] | Zhang W, Brongersma S H, Richard O, Brijs B, Palmans R, Froyen L, Maex K. Influence of the electron mean free path on the resistivity of thin metal films[J]. Microelectron. Eng., 2004, 76(1-4): 146-152. https://doi.org/10.1016/j.mee.2004.07.041. |
[3] | Choi D. Potential of ruthenium and cobalt as next-generation semiconductor interconnects[J]. Korean J. Met. Mater., 2018, 56(8): 605-610. http://dx.doi.org/10.3365/KJMM.2018.56.8.605. |
[4] | Tan C M, Roy A, Reports E R. Electromigration in ULSI interconnects[J]. Mater. Sci., 2007, 58(1-2): 1-75. https://doi.org/10.1016/j.mser.2007.04.002. |
[5] | Bekiaris N, Wu Z Y, Ren H, Naik M, Park J H, Lee M, Ha T H, Hou W, Bakke J R, Gage M. Cobalt fill for advanced interconnects[C]//2017 IEEE International Interconnect Technology Conference (IITC), Hsinchu, Taiwan, 2017: 1-3. https://doi.org/10.1109/IITC-AMC.2017.7968981. |
[6] | Bourzac K. Cobalt could untangle chips' wiring problems[J]. IEEE Spectrum., 2018, 55(2): 12-13. https://doi.org/10.1109/MSPEC.2018.8278123. |
[7] | Wu J, Wafula F, Branagan S, Suzuki H, van Eisden J. Mechanism of cobalt bottom-up filling for advanced node interconnect metallization[J]. J. Electrochem. Soc., 2018, 166(1): D3136-D3141. https://doi.org/10.1149/2.0161901jes. |
[8] | Auth C, Aliyarukunju A, Asoro M, Bergstrom D, Bhagwat V, Birdsall J, Bisnik N, Buehler M, Chikarmane V, Ding G. A 10nm high performance and low-power CMOS technology featuring 3 rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects[C]// International Electron Devices Meeting(IEDM). 2017: 29.1. 1-29.1.4. https://doi.org/10.1109/IEDM.2017.8268472. |
[9] | Gusley R, Ezzat S, Coffey K R, West A C, Barmak K. Influence of the seed layer and electrolyte on the epitaxial electrodeposition of Co (0001) for the fabrication of single crystal interconnects[J]. J. Electrochem. Soc., 2020, 167(16): 162503. https://doi.org/10.1149/1945-7111/abcd13. |
[10] | Kang J, Sung M, Byun J, Kwon O J, Kim J J. Superconformal cobalt electrodeposition with a hydrogen evolution reaction suppressing additive[J]. J. Electrochem. Soc., 2020, 167(16): 162514. https://doi.org/10.1149/1945-7111/abd3b9. |
[11] | Ni X R, Chen Y M, Jin X F, Wang C, Huang Y Z, Hong Y, Su X H, Zhou G Y, Wang S X, He W, Chen Q G. Investigation of polyvinylpyrrolidone as an inhibitor for trench super-filling of cobalt electrodeposition[J]. J. Taiwan Inst. Chem. E, 2020, 112: 232-239. https://doi.org/10.1016/j.jtice.2020.06.010. |
[12] | Kongstein O, Haarberg G, Thonstad. Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature[J]. J. Appl. Electrochem., 2007, 37: 669-674. https://doi.org/10.1007/s10800-007-9299-z |
[13] | Wang Z L, Obata R, Sakaue H, Takahagi T, Shingubara S. Bottom-up copper fill with addition of mercapto alkyl carboxylic acid in electroless plating[J]. Electrochim. Acta., 2006, 51(12): 2442-2446. https://doi.org/10.1016/j.electacta.2005.07.023. |
[14] | Wang Z X, Wang S, Yang Z, Wang Z L. Influence of additives and pulse parameters on uniformity of through-hole copper plating[J]. Transactions of the IMF., 2013, 88(5): 272-276. https://doi.org/10.1179/002029610X12791981507884. |
[15] | Yang Z F, Wang Z X, Wang X, Wang Z L. Comparison of bottom‐up filling in electroless plating with an addition of PEG, PPG and EPE[J]. Chin. J. Chem., 2011, 29(3): 422-426. https://doi.org/10.1002/cjoc.201190098. |
[16] | Zan L X, Liu Z H, Yang Z P, Wang Z L. A synergy effect of 2-MBT and PE-3650 on the bottom-up filling in electroless copper plating[J]. Electrochem Solid St., 2011, 14(12). https://doi.org/10.1149/2.018112esl. |
[17] | Hassan Zadeh Shirazi S M, Bahrololoom M E, Shariat M H. The role of functional groups of saccharin in electrodeposition of nanocrystalline nickel[J]. Surf. Eng. Appl. Electrochem., 2016, 52(5): 434-442. https://doi.org/10.3103/S1068375516050112. |
[18] | Sen R, Das S, Das K. Influence of sodium saccharin on the microstructure of pulse electrodeposited Ni-CeO2 nanocomposite coating[J]. Int. J. Nanosci., 2012, 12(10): 7944-7949. https://doi.org/10.1166/jnn.2012.6654. |
[19] | Wang Y H, Yu M Q, Luo H L, Qiao Q, Xiao Z Z, Zhao Y, Zhao L L, Sun H, Xu Z F, Matsugi K, Yu J K. Effect of saccharin on the structure and properties of electrodeposition NiWP alloy coatings[J]. J. Mater. Eng. Perform., 2016, 25(10): 4402-4407. https://doi.org/10.1007/s11665-016-2298-7. |
[20] | Altamirano-Garcia L, Vazquez-Arenas J, Pritzker M, Luna-Sánchez R, Cabrera-Sierra R. Effects of saccharin and anions (SO42-, Cl-) on the electrodeposition of Co-Ni alloys[J]. J. Solid State Electrochem., 2014, 19(2): 423-433. https://doi.org/10.1007/s10008-014-2616-7. |
[21] | Hoghoghifard S, Mokhtari H. Improving the microwave absorption in Ni-coated fabrics by saccharin addition in plating bath[J]. J. Ind. Text., 2018, 49(3): 402-411. https://doi.org/10.1177/1528083718787525. |
[22] | Kolonits T, Jenei P, Péter L, Bakonyi I, Czigány Z, Gubicza J. Effect of bath additives on the microstructure, lattice defect density and hardness of electrodeposited nanocrystalline Ni films[J]. Surf. Coat. Technol., 2018, 349: 611-621. https://doi.org/10.1016/j.surfcoat.2018.06.052. |
[23] | Li Y Q, Ren P H, Li R P, Zhang Y H, Zhang J Q, Yang P X, An M Z. A novel bright additive for copper electroplating: electrochemical and theoretical study[J]. Ionics, 2023, 29(1): 363-375. https://doi.org/10.1007/s11581-022-04799-7. |
[24] | Wang C, Zhang J Q, Yang P X, An M Z. Electrochemical behaviors of Janus Green B in through-hole copper electroplating: An insight by experiment and density functional theory calculation using Safranine T as a comparison[J]. Electrochim. Acta, 2013, 92: 356-364. https://doi.org/10.1016/j.electacta.2013.01.064. |
[25] | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50. https://doi.org/10.1016/0927-0256(96)00008-0. |
[26] | Bl?chl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953. https://doi.org/10.1103/PhysRevB.50.17953. |
[27] | Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758. https://doi.org/10.1103/PhysRevB.59.1758. |
[28] | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865. https://doi.org/10.1103/PhysRevLett.77.3865. |
[29] | Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188. https://doi.org/10.1103/PhysRevB.13.5188. |
[30] | Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H. Gaussian 16, revision a. 03, gaussian, inc., wallingford ct[EB/CP]. Gaussian16, 2016. |
[31] | Dong L W, Zhong S J, Yuan B T, Li Y Q, Liu J P, Ji Y P, Chen D J, Liu Y P, Yang C H, Han J C, He W D. Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode‐free Li‐metal batteries[J]. Angew. Chem. Int. Ed., 2023, 135(23): e202301073. https://doi.org/10.1002/anie.202301073. |
[32] | Li R P, Li Y Q, Yang P X, Ren P H, Wang D, Lu X Y, Xu R Y, Li Y H, Xue J M, Zhang J Q. Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater electrolysis[J]. Appl. Catal. B-Environ.??, 2022, 318: 121834. https://doi.org/10.1016/j.apcatb.2022.121834. |
[33] | Li Y Q, Ren P H, Zhang Y H, Li R P, Zhang J Q, Yang P X, Liu A M, Wang G Z, An M Z. Investigation of novel leveler Rhodamine B on copper superconformal electrodeposition of microvias by theoretical and experimental studies[J]. Appl. Surf. Sci., 2023, 615: 156266. https://doi.org/10.1016/j.apsusc.2022.156266. |
[34] | Li Y Q, Li C Z, Li R P, Peng X S, Zhang J Q, Yang P X, Wang G Z, Wang B, Broekmann P, An M Z. Experimental and theoretical study of the new leveler basic blue 1 during copper superconformal growth[J]. ACS Appl. Mater. Interfaces, 2023, 15(40): 47628-47639. https://doi.org/10.1021/acsami.3c06567. |
[35] | Ma X C, Li Y Q, Yang P X, Zhang J Q, An M Z. Influence of suppressing additive malachite green on superconformal cobalt electrodeposition[J]. J. Electroanal. Chem., 2022, 921: 116696. https://doi.org/10.1016/j.jelechem.2022.116696. |
[36] | Burton W K, Cabrera N t, Frank F. The growth of crystals and the equilibrium structure of their surfaces[J]. Phil. Trans. R. Soc. A, 1951, 243(866): 299-358. https://doi.org/10.1098/rsta.1951.0006. |
/
〈 |
|
〉 |