欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

仿真模拟不锈钢波纹管在不同液膜厚度下的点蚀过程

  • 任露军 ,
  • 李国敏 ,
  • 朱振啸 ,
  • 熊海燕 ,
  • 李冰
展开
  • 华东理工大学,上海 200237

收稿日期: 2025-02-16

  修回日期: 2025-03-17

  录用日期: 2025-03-28

  网络出版日期: 2025-03-28

Numerical Simulation of the Pitting Corrosion Behavior of Stainless Steel Bellows Influenced by Varying Liquid Film Thicknesses

  • Lu-Jun Ren ,
  • Guo-Min Li ,
  • Zhen-Xiao Zhu ,
  • Hai-Yan Xiong ,
  • Bing Li
Expand
  • School of Mechanical and Power Engineering East China University of Science and Technology, Shanghai 200237, China
*Bing Li, E-mail: bingli@ecust.edu.cn

Received date: 2025-02-16

  Revised date: 2025-03-17

  Accepted date: 2025-03-28

  Online published: 2025-03-28

摘要

为了深入研究波纹管在海洋大气环境下的腐蚀过程以及准确预测其使用寿命,在考虑局部电化学反应、氧气浓度及溶液中均相反应的基础上,本文采用有限元法模拟研究了波纹管波峰和波谷在不同电解质液膜厚度下的点腐蚀速度和腐蚀坑形态,同时,为了提高计算精度,本文使用插值函数的形式直接导入拟合后的极化曲线数据作为电极表面的非线性边界条件。研究结果表明,波峰比波谷的腐蚀速度更快;随着电解质液膜厚度的增加(从10 μm增加到500 μm),波峰和波谷的腐蚀速度均逐渐减慢,波峰处在模拟时长为120 h后的最大腐蚀速度从0.720 mm/a减小至0.130 mm/a,波谷处从0.520 mm/a减小至0.120 mm/a,两处的腐蚀速度差异逐渐减小;随着腐蚀的进行,腐蚀坑逐渐向着基体内部扩展,除了纵向扩展外,其还沿着钝化膜界面横向扩展,直至穿透整个基体。本研究为不锈钢波纹管在海洋环境下的防腐工作提供了参考。

本文引用格式

任露军 , 李国敏 , 朱振啸 , 熊海燕 , 李冰 . 仿真模拟不锈钢波纹管在不同液膜厚度下的点蚀过程[J]. 电化学, 2025 , 31(7) : 2502161 . DOI: 10.61558/2993-074X.3539

Abstract

To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions, this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses. The model incorporates localized electrochemical reactions, oxygen concentration, and homogeneous solution reactions. For improved computational accuracy, the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions. Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions. With increasing electrolyte film thickness (from 10 μm to 500 μm), corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation, the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a, and at the troughs from 0.520 mm/a to 0.120 mm/a, with the disparity in corrosion rates diminishing over time. Furthermore, as corrosion progresses, pits propagate deeper into the substrate, exhibiting both vertical penetration and lateral expansion along the passive film interface, ultimately breaching the substrate. This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments.

参考文献

[1] Faraji G, Besharati M K, Mosavi M, Kashanizadeh H. Experimental and finite element analysis of parameters in manufacturing of metal bellows[J]. Int. J. Adv. Manuf. Technol., 2007, 38(7-8): 641-648. https://doi.org/10.1007/s00170-007-1122-9
[2] Igi S, Katayama H, Kawahara M. Evaluation of mechanical behavior of new type bellows with two-directional convolutions[J]. Nucl. Eng. Des., 2000, 197(1-2): 107-114. https://doi.org/10.1016/S0029-5493(99)00260-5
[3] K. Kowal, J.Detuccia, J. Y. Josefowicz, C. Laird, G. C. Farringto. In situ atomic force microscopy observations of the corrosion behavior of aluminum‐copper alloys[J]. J. Electrochem. Soc., 1996, 143(8): 2471-2481. https://doi.org/10.1149/1.1837033
[4] Rynders R M, Paik C H, Ke R, Alkire R C. Use of in situ atomic force microscopy to image corrosion at inclusions[J]. J. Electrochem. Soc., 1994, 141 (6): 1439-1445. https://doi.org/10.1149/1.2054943
[5] Wang B, Lan H X, Lei B B. Analysis on fracture toughness of the l360QS/N08825 bimetallic composite pipe welded joint[J]. Adv. Mater. Sci. Eng., 2019, 2019: 1-13. https://doi.org/10.1155/2019/2983506
[6] Zhang S X, Xie F Q, Li X M, Luo J H, Su G G, Zhu L X, Chen Q G. Failure analysis of the leakage in girth weld of bimetal composite pipe[J]. Eng. Fail. Anal., 2023, 143: 106917. https://doi.org/10.1016/j.engfailanal.2022.106917
[7] Kim H J, Jeon S H, Kim S T, Lee I S, Park Y S, Kim K T, Kim Y S. Investigation of the sensitization and intergranular corrosion of tube-to-tubesheet welds of hyper duplex stainless steel using an electrochemical reactivation method[J]. Corros. Sci., 2014, 87: 60-70. https://doi.org/10.1016/j.corsci.2014.06.005
[8] Boag A, Taylor R J, Muster T H, Goodman N, McCulloch D, Ryan C, Rout B, Jamieson D, Hughes A E. Stable pit formation on AA2024-T3 in a NaCl environment[J]. Corros. Sci., 2010, 52(1): 90-103. https://doi.org/10.1016/j.corsci.2009.08.043
[9] Boag A, Hughes A E, Glenn A M, Muster T H, McCulloch D. Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles[J]. Corros. Sci., 2011, 53(1): 17-26. https://doi.org/10.1016/j.corsci.2010.09.009
[10] A.M. Glenn, T.H. Muster, C. Luo, X. Zhou, G.E. Thompson, A. Boag, A.E. Hughes. Corrosion of AA2024-T3 Part III: Propagation[J]. Corros. Sci., 2011, 53(1): 40-50. https://doi.org/10.1016/j.corsci.2010.09.035
[11] Sharland S M. A mathematical model of crevice and pitting corrosion-II. The mathematical solution[J]. Corros. Sci., 1988, 28(6): 621-630. https://doi.org/10.1016/0010-938X(88)90028-5
[12] Sharland S M, Tasker P W. A mathematical model of crevice and pitting corrosion-I. The physical model[J]. Corros. Sci., 1988, 28(6): 603-620. https://doi.org/10.1016/0010-938X(88)90027-3
[13] Sharland S M. A review of the theoretical modeling of crevice and pitting corrosion[J]. Corros. Sci., 1987, 27(3): 289-323. https://doi.org/10.1016/0010-938X(87)90024-2
[14] Sharland S M, Jackson C P, Diver A J. A finite-element model of the propagation of corrosion crevices and pits[J]. Corros. Sci., 1989, 29(9): 1149-1166. https://doi.org/10.1016/0010-938X(89)90051-6
[15] Frankel G S, Li T, Scully J R. Perspective-localized corrosion: passive film breakdown vs pit growth stability[J]. J. Electrochem. Soc, 2017, 164(4): C180-C181. https://doi.org/10.1149/2.1381704jes
[16] Mai W, Soghrati S, Buchheit R G. A phase field model for simulating the pitting corrosion[J]. Corros. Sci., 2016, 110: 157-166. https://doi.org/10.1016/j.corsci.2016.04.001
[17] Wang H T, Han E H. Computational simulation of corrosion pit interactions under mechanochemical effects using a cellular automaton/finite element model[J]. Corros. Sci., 2016, 103: 305-311. https://doi.org/10.1016/j.corsci.2015.11.034
[18] Fatoba O O, Leiva-Garcia R, Lishchuk S V, Larrosa N O, Akid R. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach[J]. Corros. Sci., 2018, 137: 83-97. https://doi.org/10.1016/j.corsci.2018.03.029
[19] Cao X F, Hu X J. The investigation of micro-galvanic corrosion of SAF 2205 duplex stainless steel based on numerical simulation model and immersion test[J]. Corros. Sci., 2022, 207: 110601. https://doi.org/10.1016/j.corsci.2022.110601
[20] Deshpande K B. Numerical modeling of micro-galvanic corrosion[J]. Electrochim. Acta, 2011, 56(4): 1737-1745. https://doi.org/10.1016/j.electacta.2010.09.044
[21] Liu J, Liu Y, Li L Y, Li X, Yang S F, Geng Y H, Liu F Y. Springback analysis of thin-walled stainless steel bellow in hydroforming[J]. Adv. Mat. Res., 2015, 1095: 855-858. https://doi.org/10.4028/www.scientific.net/AMR.1095.855
[22] Hao Z L, Luo J T, Jin Y.B, Wei W, Liu L. Failure analysis of corrugated metal hose under ultimate repeated bending process[J]. Eng. Fail. Anal., 2020, 109: 104295. https://doi.org/10.1016/j.engfailanal.2019.104295
[23] Wang M Y, Yan M, Yang C Y, Liu Y, Huang H G. A study on the evolution mechanism of small diameter thin-walled stainless steel bellows during a bending process[J]. Eng. Fail. Anal., 2023, 152: 107462. https://doi.org/10.1016/j.engfailanal.2023.107462
[24] Guo H S, Wang L, Yin J M, Yao C G, Zhang C X, Luo J T. Finite element simulation prediction of repeated bending failure zone of roll-welded bellows based on an equivalent welding model[J]. Eng. Fail. Anal., 2023, 151: 107371. https://doi.org/10.1016/j.engfailanal.2023.107371
[25] Li Z H, Tian W F, Wang J M, Yan J H, Zhang L, Wang X X. Simulation analysis of three-dimensional finite element model about the corrosion defect of pipeline[C]// Proceedings Of 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, Peoples R China, 01-03, November, 2019: 1105-1111. https://doi.org/10.1109/icemi46757.2019.9101473
[26] Chen M C, Wen Q Q. Simulation of corrosion process for structure with the cellular automata method[C]// 2nd International Conference on Civil Engineering and Materials Science (ICCEMS) Seoul, South Korea,, 26-28 May, 2017, 216: 012012. https://doi.org/10.1088/1757-899X/216/1/012012
[27] Zhang Y D, Wong R C K. Effect of corrosion on buried pipe responses under external load: Experimental and numerical study[J]. Tunn. Underdr. Sp. Tech., 2023, 132: 104934. https://doi.org/10.1016/j.tust.2022.104934
[28] Dai M. In situ mathematically simulation for CO2 internal corrosion in wet natural gas gathering pipelines system by HYSYS[J]. Eng. Fail. Anal., 2021, 122: 105265. https://doi.org/10.1016/j.engfailanal.2021.105265
[29] Guan X R, Zhang D L, Wang J J, Jin Y H, Li Y. Numerical and electrochemical analyses on carbon dioxide corrosion of X80 pipeline steel under different water film thicknesses in NACE solution[J] Nat. Gas Sci. Eng., 2017, 37: 199-216. https://doi.org/10.1016/j.jngse.2016.11.047
[30] Yin L T, Jin Y, Leygraf C, Pan J S. A FEM model for investigation of micro-galvanic corrosion of Al alloys and effects of deposition of corrosion products[J]. Electrochim. Acta, 2016, 192: 310-318. https://doi.org/10.1016/j.electacta.2016.01.179
[31] Fattah-alhosseini A, Golozar M A, Saatchi A, Raeissi K. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels[J]. Corros. Sci., 2010, 52(1): 205-209. https://doi.org/10.1016/j.corsci.2009.09.003
[32] Krawiec H, Vignal V, Akid R. Numerical modelling of the electrochemical behaviour of 316L stainless steel based upon static and dynamic experimental microcapillary-based techniques[J]. Electrochim. Acta, 2008, 53(16): 5252-5259. https://doi.org/10.1016/j.electacta.2008.02.063
[33] Walton J C, Cragnolino G, Kalandros S K. A numerical model of crevice corrosion for passive and active metals[J]. Corros. Sci., 1996, 38(1): 1-18. https://doi.org/10.1016/0010-938X(96)00107-2
[34] Sun W, Wang L D, Wu T T, Liu G C. An arbitrary lagrangian-eulerian model for modelling the time-dependent evolution of crevice corrosion[J]. Corros. Sci., 2014, 78: 233-243. https://doi.org/10.1016/j.corsci.2013.10.003
[35] Heppner K L, Evitts R W, Postlethwaite J. Prediction of the crevice corrosion incubation period of passive metals at elevated temperatures: part ii — model verification and simulation[J]. Can. J. Chem. Eng., 2002, 80(5): 857-864. https://doi.org/10.1002/cjce.5450800509
[36] Xia D H, Deng C M, Chen Z G, Li T S, Hu W B. Modeling localized corrosion propagation of metallic materials by peridynamics: progresses and challenges[J]. Acta. Metall. Sin., 2022, 58(9): 1094-1107. https://doi.org/10.11900/0412.1961.2022.00249
[37] Gomes da Silva M J, Fragoso H A P, Barrio R C A G, Cardoso J L. Stress corrosion of an austenitic stainless steel expansion joint, a case study[J]. Eng. Fail. Anal., 2019, 97: 300-310. https://doi.org/10.1016/j.engfailanal.2019.01.021
[38] Dolgikh O, Bastos A C, Oliveira A, Dan C, Deconinck J. Influence of the electrolyte film thickness and NaCl concentration on the oxygen reduction current on platinum[J]. Corros. Sci., 2016, 102: 338-347. https://doi.org/10.1016/j.corsci.2015.10.025
文章导航

/