单元化再生燃料电池中膜电极组件催化剂层的变化
收稿日期: 2025-01-14
录用日期: 2025-02-19
网络出版日期: 2025-03-28
Variation of Membrane Electrode Assembly Catalyst Layer in Unitized Regenerative Fuel Cell
Received date: 2025-01-14
Accepted date: 2025-02-19
Online published: 2025-03-28
单位化再生燃料电池(URFC)是一种可以作为燃料电池(FC)或水电解(WE)进行可逆工作的装置。该装置的重要组成部分是膜电极组件(MEA)。因此,本研究旨在比较使用单层和三层催化剂电极的MEA性能结果。本研究测量了电化学表面积(ECSA)、电化学阻抗谱(EIS)、X射线衍射分析(XRD)和X射线荧光分析(XRF)。此外,还测量了MEA的往返效率(RTE)以及其在FC和WE模式下的性能。对比结果显示,三层催化剂电极的Pt-Ru/C和Pt/C的ECSA值高于单层催化剂电极。该结果得到了XRD和XRF电极表征数据的支持。Pt-Ru/C和Pt/C三层催化剂电极的电导率值也高于单层催化剂电极,使用三层催化剂MEA的URFC性能在所有MEA的URFC性能中具有最高的RTE值,在4 mA·cm-2的电流密度下为100%。
努尔乔利法·尤兰达 , 罗亨迪·德迪 , 马吉兰·赫里安托·埃迪 , 萨里夫·尼尔万 , 拉赫马特·阿迪 , 尤利安蒂·哈瓦·德威 , S·费布里卡·尼玛斯 . 单元化再生燃料电池中膜电极组件催化剂层的变化[J]. 电化学, 2025 , 31(4) : 2501161 . DOI: 10.61558/2993-074X.3540
A unitized regenerative fuel cell (URFC) is a device that may function reversibly as either a fuel cell (FC) or water electrolysis (WE). An important component of this device is the Membrane electrode assembly (MEA). Therefore, this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers. This study measured Electrochemical Surface Area (ECSA), Electrochemical Impedance Spectroscopy (EIS), X-ray Diffraction analysis (XRD), and X-ray Fluorescence (XRF). Furthermore, the round-trip efficiency (RTE) of the MEA, as well as the performance in FC and WE mode, was measured. In comparison, The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer. This result was supported by electrode characterization data for XRD and XRF. The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single catalyst layer, and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC, which is 100% at a current density of 4 mA·cm-2.
[1] | Yelegen N, Kümük B, Kaplan R N, ?lba? M, Kaplan Y. Numerical and experimental studies on unitized regenerative proton exchange membrane fuel cell[J]. Int. J. Hydrogen Energy, 2023, 48(35): 12969-12981. |
[2] | Kadyk T, Sun Y, Kaur J, Kulikovsky A, Eikerling M. Frequency response diagnostics of electrochemical energy devices[J]. Curr. Opin. Electrochem., 2023, 42: 1-5. |
[3] | Ren X F, Wang Y R, Liu A M, Zhang Z H, Lv Q Y, Liu B H. Current progress and performance improvement of Pt/C catalysts for fuel cells[J]. J. Mater. Chem. A., 2020, 8(46): 24284-284306. |
[4] | Rahim Malik F, Yuan H B, Moran J C, Tippayawong N. Overview of hydrogen production technologies for fuel cell utilization[J]. Eng. Sci. Technol., 2023, 43: 101452. |
[5] | Pu Z H, Zhang G X, Hassanpour A, Zheng D W, Wang S Y, Liao S J, Chen Z X, Sun S H. Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system[J]. Appl. Energy, 2021, 283: 116376. |
[6] | Hassan N. N, Ganesan P, Lando A A, Mustain W E, Colón-Mercado H R. Stable, high-performing bifunctional electrodes for anion exchange membrane-based unitized regenerative fuel cells[J]. J. Power Sources, 2022, 541: 231599 |
[7] | Meda U S, Rajyaguru Y V, Pandey A. Generation of green hydrogen using self-sustained regenerative fuel cells: Opportunities and challenges[J]. Int. J. Hydrogen Energy, 2023, 48(73): 28289-28314. |
[8] | Kim D H, Jung H S, Kim D H, Pak C. Using distribution of relaxation times to separate the impedances in the membrane electrode assembly for high-temperature polymer electrolyte membrane fuel cells[J]. Int. J. Hydrogen Energy, 2024, 62: 389-396. |
[9] | Eun J, Karuppannan M, Joong O, Cho Y. Development of high-performance membrane-electrode assembly in unitized regenerative fuel cells[J]. J. Ind. Eng. Chem., 2019, 80: 527-534. |
[10] | Li Y Z, Liu L, Xing Y J, Zhang G C. An asymmetric membrane electrode assembly for high-performance proton exchange membrane fuel cells[J]. Int. J. Hydrogen Energy, 2024, 55: 357-364. |
[11] | Radestia Rahmah D, Rohendi D, Syarif N, Rachmat A, Sya’baniah NF, Hawa Yulianti D. Characterization of Electrode with Cu2O-ZnO/C and Pt-Ru/C Catalyst for Electrochemical Reduction CO2 to CH3OH[J]. Indones. J. Fundam. Appl. Chem., 2021, 6(1): 8-13. |
[12] | Krasnova A O, Glebova N V, Kastsova A G, Rabchinskii M K, Nechitailov A A. Thermal stabilization of nafion with nanocarbon materials[J]. Polymers, 2023, 15(9): 1-13. |
[13] | Rohendi D, Majlan E H, Yulianti D H, Juwita, Syarif N, Rachmat A, et al. Performance of membrane electrode assembly using Pt/C and CoFe/N-C catalysts in proton exchange membrane fuel cells[J]. Malaysian J. Anal. Sci., 2024, 28(2): 388-396. |
[14] | Chattot R, Mirolo M, Martens I, Kumar K, Martin V, Gasmi A, et al. Beware of cyclic voltammetry! Measurement artefact in accelerated stress test of fuel cell cathode revealed by operando X-ray diffraction[J]. J. Power Sources, 2023, 555: 1-8. |
[15] | Vermaak L, Neomagus H W J P, Bessarabov D G. The CO tolerance of Pt/C and Pt-Ru/C electrocatalysts in a high-temperature electrochemical cell used for hydrogen separation[J]. Membranes, 2021, 11(9): 670. |
[16] | Fouad A A, El-Sonbati A Z, Diab M A, Elsayad M R, Gomaa E A. Thermodynamic solvation parameters, cyclic voltammetry for CdBr2 in sodium chloride supporting electrolyte alone and in interaction with succinic acid solutions with Tafel slopes application[J]. J. Mol. Liq., 2024, 399: 124368. |
[17] | Won J E, Kwak D H, Han S B, Park H S, Park J Y, Ma K B, Kim D H, Park K W. PtIr/Ti4O7 as a bifunctional electrocatalyst for improved oxygen reduction and oxygen evolution reactions[J]. J. Catal., 2018, 358: 287-294. |
[18] | Li Y H, Jiang G, Yang Y, Song W, Yu H M, Hao J K, & Shao, Z G. PtIr/CNT as anode catalyst with high reversal tolerance in PEMFC[J]. Int. J. Hydrogen Energy. 2023; 48(93): 36500-36511. |
[19] | Noh H, Park Y, Bhadouria A, Tackett B M. Effects of electrochemical active surface area of Cu on electrochemical CO2 reduction in acidic electrolyte using Cu nanoparticles on surfactant-treated carbon[J]. J. Catal., 2024, 437: 115662. |
[20] | Bredar A R C, Chown A L, Burton A R, Farnum B H. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications[J]. ACS Appl. Energy Mater., 2020, 3(1): 66-98. |
[21] | Zabara MA, Kat?rc? G, Civan FE, Yürüm A, Gürsel SA, ülgüt B. Insights into charge transfer dynamics of Li batteries through temperature-dependent electrochemical impedance spectroscopy (EIS) utilizing symmetric cell configuration[J]. Electrochim. Acta, 2024, 485: 1-8. |
[22] | Ma X, Wang L F, Jin H Y, Chen W, Liu P, Wang J, J, Li W. Properties of gradient Ni-P-PTFE coatings on stainless steel with different polytetrafluoroethylene concentrations[J]. Thin Solid Films, 2024, 799: 1-10. |
[23] | Wang Q, Zhou Y W, Jin Z, Chen C, Li H, Cai W B. Alternative aqueous phase synthesis of a PtRu/C electrocatalyst for direct methanol fuel cells[J]. Catalysts, 2021, 11(8) :1-14. |
[24] | Sebbahi S, Assila A, Alaoui Belghiti A, Laasri S, Kaya S, Hlil E, Rachidi S, Hajjaji A. A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production[J]. Int. J. Hydrogen Energy, 2024, 82: 583-599. |
[25] | Alabbadi A A, AlZahrani A A. Nuclear hydrogen production using PEM electrolysis integrated with APR1400 power plant[J]. Int. J. Hydrogen Energy. 2024, 60: 241-260. |
[26] | Chen W S, Meng K, Zhou H, Zhou Y, Deng Q B, Chen B. Optimization research on round-trip efficiency of a CHP system based on 10 kW-grade unitized regenerative fuel cell[J]. Energy Convers. Manag., 2023, 280(1): 1-14. |
[27] | Wang H Y, Zhang Y F, Jin P, Cai X C, Du J Y, Zhang W L, Wang H R, Li R X. Dynamic thermodynamic performance analysis of a novel pumped thermal electricity storage (N-PTES) system coupled with liquid piston[J]. J. Energy Storage., 2024, 84 :110836. |
[28] | Qiao J N, Guo H, Chen H, Ye F. Improving round-trip energy efficiency of a unitized regenerative fuel cell by adopting staircase flow channel and counter flow configuration[J]. Energy Convers. Manag., 2022, 271: 116345. |
[29] | Song H, Shao X Y, Zhang H, Jiang P X, Wen X F, Zhan Z G. Effects of Nafion content in the catalyst layer of PEMFC on the transport phenomenon among nanoscale particles[J]. Int. J. Hydrogen Energy, 2024, 67: 282-293. |
[30] | Chen G Y, Wang C, Lei Y J, Zhang J, Mao Z, Mao Z Q, Guo J W, Li J Q, Ouyang M G. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs[J]. Int. J. Hydrogen Energy, 2017; 42(50): 29960-29965. |
/
〈 |
|
〉 |