欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

MXene复合材料的制备及其改性策略在电化学储能中的应用

  • 游章海 ,
  • 卢定泽 ,
  • Kiran Kumar Kondamareddy ,
  • 顾文举 ,
  • 成鹏飞 ,
  • 杨静萱 ,
  • 郑睿 ,
  • 王红梅
展开
  • a西安工程大学理学院,陕西 西安,710048
    bSchool of Pure Science, College of Engineering and Technical Vocational Education and Training (CETVET), Fiji National University, Lautoka, Fiji
    c嘉兴大学生物与化学工程学院,浙江 嘉兴,314001

收稿日期: 2024-12-13

  修回日期: 2025-01-27

  录用日期: 2025-02-14

  网络出版日期: 2025-02-15

Preparation and Modification of MXene Composites for Application in Electrochemical Energy Storage

  • Zhang-Hai You ,
  • Ding-Ze Lu ,
  • Kiran Kumar Kondamareddy ,
  • Wen-Ju Gu ,
  • Peng-Fei Cheng ,
  • Jing-Xuan Yang ,
  • Rui Zheng ,
  • Hong-Mei Wang
Expand
  • aSchool of Science, Xi’an Polytechnic University, No.19 of Jinhua South Road, Beilin District, Xi’an 710048, PR China
    bSchool of Pure Science, College of Engineering and Technical Vocational Education and Training (CETVET), Fiji National University, Lautoka, Fiji
    cCollege of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, China

Received date: 2024-12-13

  Revised date: 2025-01-27

  Accepted date: 2025-02-14

  Online published: 2025-02-15

摘要

在先进工业化与城市化的加速发展的背景下,环境恶化的速度不断加快,不可再生能源资源也日益枯竭。因此,开发潜在的清洁能源存储技术显得尤为迫切。电化学储能技术目前已广泛应用于多个领域,其中超级电容器和可充电电池作为关键组成部分,发挥着重要作用。这些技术不仅是存储可再生能源的核心要素,还对推动可持续发展具有重要意义。近年来,二维材料MXene凭借其卓越的电学性能、较大的比表面积以及可调控特性,在能源领域及其他多个应用场景中展现出巨大的发展潜力。基于MXene的层状结构,研究人员通过对费米能级处的表面终端进行调整,成功实现了储能与能量转换的双重功能。值得关注的是,与其他二维材料相比,MXene在表面拥有更多的活性位点,这使其表现出优异的催化性能。反观其他二维材料,其催化活性仅体现在边缘位点。本文全面且系统地概述了基于MXene的聚合物材料的合成工艺、结构特征、改性手段,以及它们在电化学储能领域的具体应用。此外,文章还简要探讨了MXene聚合物材料在电磁屏蔽技术和传感器领域的潜在应用价值,并对未来的研究方向进行了展望,以期为相关领域的进一步发展提供参考。

本文引用格式

游章海 , 卢定泽 , Kiran Kumar Kondamareddy , 顾文举 , 成鹏飞 , 杨静萱 , 郑睿 , 王红梅 . MXene复合材料的制备及其改性策略在电化学储能中的应用[J]. 电化学, 2025 , 31(5) : 2418001 . DOI: 10.61558/2993-074X.3524

Abstract

With the acceleration of advanced industrialization and urbanization, the environment is deteriorating rapidly, and non-renewable energy resources are depleted. The gradual advent of potential clean energy storage technologies is particularly urgent. Electrochemical energy storage technologies have been widely used in multiple fields, especially supercapacitors and rechargeable batteries, as vital elements of storing renewable energy. In recent years, two-dimensional material MXene has shown great potential in energy and multiple application fields thanks to its excellent electrical properties, large specific surface area, and tunability. Based on the layered materials of MXene, researchers have successfully achieved the dual functions of energy storage and conversion by adjusting the surface terminals at the Fermi level. It is worth noting that compared with other two-dimensional materials, MXene has more active sites on the basal plane, showing excellent catalytic performance. In contrast, other two-dimensional materials have catalytic activity only at the edge sites. This article comprehensively overviews the synthesis process, structural characteristics, modification methods for MXene-based polymer materials, and their applications in electrochemical energy storage. It also briefly discusses the potential of MXene-polymer materials in electromagnetic shielding technology and sensors and looks forward to future research directions.

参考文献

[1] Amirrud M M, Shahin M. Sensitivity and uncertainty analysis of economic feasibility of establishing wind power plant in Kerman, Iran[J]. RERA Renew. Energy Res. Appl., 2020, 2: 247-260.
[2] Samy O, Zeng S, Birowosuto M D, Moutaouakil A E. A review on MoS2 properties, synthesis, Sensing applications and challenges[J]. Crystals, 2021, 11(4): 355.
[3] Sun Y B, Li Y. Potential environmental applications of MXenes: A critical review[J]. Chemosphere, 2021, 271: 129578.
[4] Zhang Y F, Gong M, Wan P B. MXene hydrogel for wearable electronics[J]. Matter, 2021, 4(8): 2655-2658.
[5] Da Silva Santos F, Vitor da Silva L, Campos P V S, Strunkis C de M, Ribeiro C M G, Salles M O. Review—Recent advances of electrochemical techniques in food, energy, environment, and forensic applications[J]. ECS Sensors Plus, 2022, 1(1): 013603.
[6] Naguib M, Barsoum M W, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes[J]. Adv. Mater., 2021, 33(39): 2103393.
[7] Mehdi Aghaei S, Aasi A, Panchapakesan B. Experimental and theoretical advances in MXene-based gas sensors[J]. ACS Omega, 2021, 6(4): 2450-2461.
[8] Calvo E J. Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling[J]. Curr. Opin. Electrochem, 2019, 15: 102-108.
[9] Chaudhary V, Channegowda M, Ansari S A, Krishna R, Kaushik A, Khanna V, Zhao Z, Furukawa H, Khosla A. Low-trace monitoring of airborne sulphur dioxide employing SnO2-CNT hybrids-based energy-efficient chemiresistor[J]. J. Mater. RES Technol., 2022, 20: 2468-2478.
[10] Ma C, Ma M G, Si C L, Ji X X, Wan P B. Flexible MXene‐based composites for wearable devices[J]. Adv. Funct. Mater., 2021, 31(22): 2009524.
[11] Gao X, Du X, Mathis T S, Zhang M M, Wang X H, Shui J L, Gogotsi Y, Xu M. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage[J]. Nat. Commun., 2020, 11(1): 6160.
[12] He X, Ni Y X, Li Y X, Sun H X, Lu Y, Li H X, Yan Z H, Zhang K, Chen J. An MXene‐based metal anode with stepped sodiophilic gradient structure enables a large current density for rechargeable Na-O2 Batteries[J]. Adv. Mater, 2022, 34(15): 2106565.
[13] Moonla C, Lee D H, Rokaya D, Rasitanon N, Kathayat G, Lee W, Kim J, Jeerapan L. Review—Lab-in-a-mouth and advanced point-of-care sensing systems: Detecting bioinformation from the oral cavity and saliva[J]. ECS Sens. Plus, 2022, 1(2): 021603.
[14] Scott A, Pandey R, Saxena S, Osman E, Li Y, Soleymani L. A smartphone operated electrochemical reader and actuator that streamlines the operation of electrochemical biosensors[J]. ECS Sens. Plus, 2022, 1(1): 014601.
[15] Forouzandeh P, Pillai S C. MXenes-based nanocomposites for supercapacitor applications[J]. Curr. Opin. Chem. Eng, 2021, 33: 100710.
[16] Tremiliosi G, Simoes L G, Minozzi D, Santos R, Vilela D C B, Durigon E, Machado R, Medina D S, Ribeiro L, Rosa I, Assis M, Andres E, Longo E, Freitas-Junior L. Ag nanoparticles-based antimicrobial polycotton fabrics to prevent the transmission and spread of SARS-CoV-2[Z]. bioRxiv, 2020: 152520.
[17] Chen G B, Wang T, Liu P, Liao Z Q, Zhong H X, Wang G, Zhang P P, Yu M H, Zschech E, Chen M W, Zhang J, Feng X L. Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers[J]. Energy Environ. Sci., 2020, 13(9): 2849-2855.
[18] Chaudhary V, Mostafavi E, Kaushik A K. De-coding Ag as an efficient antimicrobial nano-system for controlling cellular/biological functions[J]. Matter, 2022, 5(7): 1995-1998.
[19] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv. Mater., 2011, 23(37): 4248-4253.
[20] Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi L, Okubo M, Yamada A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nat. Commun., 2015, 6: 6544.
[21] Kocheril P A, Lenz K D, Mukundan H. Total internal reflection of two lasers in a single planar optical waveguide[J]. ECS Sens. Plus, 2022, 1(2): 021601.
[22] Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nat. Rev. Mater., 2017, 2(2): 16098.
[23] Lukatskaya M R, Kota S S, Lin Z, Zhao M, Shpigel N, Levi M, Halim J, Taberna P, Barsoum M, Simon P, Gogotsi Y. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nat. Energy, 2017, 2(8): 17105.
[24] Wang L B, Zhang H, Wang B, Shen C J, Zhang C X, Hu Q K, Zhou A G, Liu B Z. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J]. Electron. Mater. Lett., 2016, 12(5): 702-710.
[25] Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment[J]. Angew. Chem. Int. Ed., 2018, 57(21): 6115-6119.
[26] Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M, Ren W C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nat. Mater., 2015, 14(11): 1135-1141.
[27] Naguib M, Saito T, Lai S, Rager M, Aytug T, Paranthaman M P, Zhao M, Gogotsi Y. Ti3C2Tx (MXene)-polyacrylamide nanocomposite films[J]. RSC Adv., 2016, 6: 72069-72073.
[28] Mirkhani S A, Shayesteh Zeraati A, Aliabadian E, Naguib M, Sundararaj U. High dielectric constant and low dielectric loss via poly(vinyl alcohol)/Ti3C2Tx MXene nanocomposites[J]. ACS Appl. Mater. Interfaces, 2019, 11(20): 18599-18608.
[29] Pan Q W, Zheng Y W, Kota S, Huang W C, Wang S J, Qi H, Kim S, Tu Y, Barsoum M W, Li C Y. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries[J]. Nano Adv., 2019, 1(1): 395-402.
[30] Zhi W Q, Xiang S L, Bian R J, Lin R Z, Wu K H, Wang T W, Cai D Y. Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method[J]. Compos. Sci. Technol., 2018, 168: 404-411.
[31] Ling Z, Ren C E, Zhao M Q, Yang J, Giammarco J, Qiu, J, Barsoum M, Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. PNAS, 2014, 111(47): 16676-16681.
[32] Luo J Q, Zhao S, Zhang H B, Deng Z, Li L, Yu Z Z. Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding[J]. Compos. Sci. Technol., 2019, 182: 107754.
[33] Zhang N, Deng T, Zhang S Q, Wang C H, Chen L X, Wang C S, Fan X L. Critical review on low-temperature Li-ion/metal batteries[J]. Adv. Mater., 2022, 34(15): 2107899.
[34] Boota M W, Pasini M, Galeotti F, Porzio W, Zhao M Q, Halim J, Gogotsi Y. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance[J]. Chem. Mater., 2017, 29: 2731-2378.
[35] Zhang Z, Yang S, Zhang P P, Zhang J, Chen G B, Feng X L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators[J]. Nat. Commun., 2019, 10(1): 2920.
[36] Shen J, Liu G Z, Ji Y F, Liu Q, Cheng L, Guan K C, Zhang M C, Liu G P, Xiong J, Yang J, Jin W Q. 2D MXene nanofilms with tunable gas transport channels[J]. Adv. Funct. Mater., 2018, 28(31): 1801511.
[37] Zhang H, Wang L B, Zhou A G, Shen C J, Dai Y H, Liu F F, Chen J F, Li P, Hu Q K. Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites[J]. RSC Adv., 2016, 6(90): 87341-87352.
[38] Zhang H, Wang L B, Chen Q, Li P, Zhou A G, Cao X X, Hu Q K. Preparation, mechanical and anti-friction performance of MXene/polymer composites[J]. Mater. Design, 2016, 92: 682-689.
[39] Cao X X, Wu M Q, Zhou A G, Wang Y, He X F, Wang L B. Non-isothermal crystallization and thermal degradation kinetics of MXene/linear low-density polyethylene nanocomposites[J]. e-Polymers, 2017, 17(5): 373-381.
[40] Sheng X X, Zhao Y F, Zhang L, Lu X. Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending[J]. Compos. Sci. Technol., 2019, 181: 107710.
[41] Sun R, Zhang H B, Liu J, Xie X, Yang R, Li Y, Hong S, Yu Z Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding[J]. Adv. Funct. Mater., 2017, 27(45): 1702807.
[42] Kumar S, Arti, Kumar P, Singh N, Verma V. Steady microwave absorption behavior of two-dimensional metal carbide MXene and Polyaniline composite in X-band[J]. J. Magn. Magn. Mater., 2019, 488: 165364.
[43] Cao Y, Deng Q H, Liu Z D, Shen D Y, Wang T, Huang Q, Du S Y, Jiang N, Lin C T, Yu J H. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene[J]. RSC Adv., 2017, 7(33): 20494-20501.
[44] Borges J, Mano J F. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chem. Rev., 2014, 114(18): 8883-8942.
[45] An H, Habib T, Shah S, Gao H L, Patel A, Echols I, Zhao X F, Radovic M, Green M J, Lutkenhaus J L. Water Sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing[J]. ACS Appl. Nano Mater., 2019, 2(2): 948-955.
[46] Shahzad F, Alhabeb M, Hatter C, Anasori B, Hong S, Koo C, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140.
[47] Seh Z W, Fredrickson K D, Anasori B, Kibsgaard J, Strickler A L, Lukatskaya M R, Gogotsi Y, Jaramillo T F, Vojvodic A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Lett., 2016, 1(3): 589-594.
[48] Ma X, Tu X L, Gao F, Xie Y, Huang X G, Fernandez C, Qu F L, Liu G B, Lu L M, Yu Y F. Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin[J]. Sensor Actuat. B-Chem., 2020, 309: 127815.
[49] Ahmed F E, Lalia B S, Hashaikeh R. A review on electrospinning for membrane fabrication: Challenges and applications[J]. Desalination, 2015, 356: 15-30.
[50] Boota M, Gogotsi Y. MXene—Conducting polymer asymmetric pseudocapacitors[J]. Adv. Energy Mate.r, 2019, 9(7): 1802917.
[51] Qin L Q, Tao Q Z, Liu X J, Fahlman M, Halim J, Persson P, Rosen J, Zhang F L. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors[J]. Nano Energy, 2019, 60: 734-742.
[52] Ding L, Wei Y Y, Wang Y J, Chen H B, Caro J, Wang H H. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angew. Chem. Int. Ed., 2017, 56(7): 1825-1829.
[53] Xu H, Ren A B, Wu J, Wang Z M. Recent advances in 2D MXenes for photodetection[J]. Adv. Funct. Mater., 2020, 30(24): 2000907.
[54] Mei J, Ayoko G A, Hu C F, Sun Z Q. Thermal reduction of sulfur-containing MAX phase for MXene production[J]. Chem. Eng. J, 2020, 395: 125111.
[55] Tang Q, Zhou Z. Graphene-analogous low-dimensional materials[J]. Prog. Mater. Sci., 2013, 58(8): 1244-1315.
[56] Peng Q M, Guo J X, Zhang Q R, Xiang J Y, Liu B Z, Zhou A G, Liu R P, Tian Y J. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. J. Am. Chem. Soc., 2014, 136(11): 4113-4116.
[57] Hong S Y, Sun Y, Lee J, Yifei M, Wang M, Nam J D, Suhr J. 3D printing of free-standing Ti3C2Tx/PEO architecture for electromagnetic interference shielding[J]. Polymer, 2021, 236: 124312.
[58] Huang Z Q, Xu M, Macam G, Hsu C H, Chuang F. Large-gap topological insulators in functionalized ordered double transition metal carbide MXenes[J]. Phys. Rev. B, 2020, 102: 075306.
[59] Khazaei M, Ranjbar A, Arai M, Yunoki S. Topological insulators in the ordered double transition metals M′2M″C2 MXenes (M′=Mo, W; M″=Ti, Zr, Hf)[J]. Phys. Rev. B, 2016, 94(12): 125152.
[60] Khazaei M, Arai M, Sasaki T, Chung C, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y. Novel electronic and magnetic properties of two‐dimensional transition metal carbides and nitrides[J]. Adv. Funct. Mater., 2013, 23: 2185-2192.
[61] Zhang Q, Yi G, Fu Z, Yu H T, Chen S, Quan X. Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance[J]. ACS Nano, 2019, 13(11): 13196-13207.
[62] Wang S, Shao H Q, Liu Y, Tang C Y, Zhao X, Ke K, Bao R Y, Yang M B, Yang W. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor[J]. Compos. Sci. Technol., 2021, 202: 108600.
[63] Tran M H, Brilmayer R, Liu L, Zhuang H L, Hess C, Brunsen A A, Birkel C S. Synthesis of a smart hybrid Mxene with switchable conductivity for temperature sensing[C]. ACS Appl. Nano Mater., 2020, 3(5): 4069-4076.
[64] Bhattacharjee Y, Arief I, Bose S. Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives[J]. J. Mater. Chem. C, 2017, 5(30): 7390-7403.
[65] Cao M S, Cai Y Z, He P, Shu J, Cao W, Yuan J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chem. Eng. J, 2019, 359: 1265-1302.
[66] Meng J J, Zhang S Y, Bekyo A, Olsoe J, Baxter B, He B. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks[J]. Sci. Rep., 2016, 6: 38565.
[67] Wang K, Zhou Y F, Xu W T, Huang D C, Wang Z G, Hong M C. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets[J]. Ceram. Int., 2016, 42(7): 8419-8424.
[68] Li Z Y, Wang L B, Sun D D, Zhang Y D, Liu B Z, Hu Q K, Zhou A G. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Mater. Sci. Eng. B, 2015, 191: 33-40.
[69] Li K, Zhao J, Zhussupbekova A, Shuck C E, Hughes L, Dong Y, Barwich S, Vaesen S, Shvets L V, M?bius M, Schmitt W, Gogotsi Y, Nicolosi V. 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage[J]. Nat. Commun., 2022, 13(1): 6884.
[70] Fan Z D, Jin J, Li C, Cai J S, Wei C H, Shao Y L, Zou G F, Sun J Y. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano, 2021, 15(2): 3098-3107.
[71] Yang W J, Yang J, Byun J J, Moissinac F P, Xu J, Haigh S J, Domingos M, Bissett M A, Dryfe R A W, Barg S. 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors[J]. Adv. Mater., 2019, 31(37): 1902725.
[72] Lipatov A, Lu H, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y, Sinitskii A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers[J]. Sci. Adv., 2018, 4(6): eaat0491.
[73] Xu W T, Xu Z, Liang Y X, Liu L M, Weng W. Enhanced tensile and electrochemical performance of MXene/CNT hierarchical film[J]. Nanotechnology, 2021, 32(35): 355706.
[74] Mashtalir O, Cook K M, Mochalin V N, Crowe M, Barsoum M W, Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media[J]. J. Mater. Chem. A, 2014, 2(35): 14334-14338.
[75] Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. J. Am. Chem. Soc., 2014, 136(17): 6385-6394.
[76] Maleski K, Mochalin V N, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in Organic Solvents[J]. Chem. Mater., 2017, 29(4): 1632-1640.
[77] Song J J, Guo X, Zhang J Q, Chen Y, Zhang C Y, Luo L Q, Wang F Y, Wang G X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries[J]. J. Mater. Chem. A, 2019, 7(11): 6507-6513.
[78] Liu R T, Miao M, Li Y H, Zhang J F, Cao S M, Feng X. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding[J]. ACS Appl. Mater., 2018, 10(51): 44787-44795.
[79] Mayerberger E A, Street R M, McDaniel R M, Barsoum M W, Schauer C L. Antibacterial properties of electrospun Ti3C2Tz(MXene)/chitosan nanofibers[J]. RSC Adv., 2018, 8(62): 35386-35394.
[80] He B Y, Peng H W, Chen Y, Zhao Q. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. J. Membr. Sci., 2020, 608: 118202.
[81] Han M, Maleski K, Shuck C E, Yang Y, Glazar J T, Foucher A C, Hantanasirisakul K, Sarycheva A, Frey N C, May S J, Shenoy V B, Stach E A, Stach Y. Tailoring electronic and optical properties of MXenes through forming solid solutions[J]. J. Am. Chem. Soc., 2020, 142(45): 19110-19118.
[82] Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson O, Eklund, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Pi?ero E, Taberna P L, Simon P, Huang Q. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nat. Mate.r, 2020, 19(8): 894-899.
[83] Firestein K L, von Treifeldt J E, Kvashnin D G, Fernando J F S, Zhang C, Kvashnin A G, Podryabinkin E V, Shapeev A V, Siriwardena D P, Sorokin P B, Golberg D. Young's modulus and tensile strength of Ti3C2MXene nanosheets as revealed by in situ TEM Probing, AFM nanomechanical mapping and theoretical calculations[J]. Nano Lett., 2020, 8: 5900-5908.
[84] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chem. Mater., 2017, 29(18): 7633-7644.
[85] Balc? E, Akku? ü ?, Berber S. Band gap modification in doped MXene: Sc2CF2[J]. J. Mater. Chem. C, 2017, 5: 5956-5961.
[86] Li J B, Liu Y, Xu F, Hu J P, Chen N, Du G P, Jiang C S. K+ intercalation of NH4HF2-exfoliated Ti3C2 MXene as binder-free electrodes with high electrochemical capacitance[J]. Phys. Status Solidi A, 2020, 217(8): 1900806.
[87] Ghani A A, Shahzad A, Moztahida M, Tahir K, Jeon H, Kim B, Lee D S. Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater[J]. Chem. Eng. J., 2021, 421: 127780.
[88] Wang X F, Shen X, Gao Y R, Wang Z X, Yu R C, Chen L Q. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X[J]. J. Am. Chem. Soc., 2015, 137(7): 2715-2721.
[89] Kajiyama S, Szabova L, Iinuma H, Sugahara A, Gotoh K, Sodeyama K, Tateyama Y, Okubo M, Yamada A. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination[J]. Adv. Energy Mater., 2017, 7(9): 1601873.
[90] Zhang C, Wang L, Lei W, Wu Y T, Li C W, Khan M A, Ouyang Y, Jiao X Y, Ye H T, Mutahir S, Hao Q L. Achieving quick charge/discharge rate of 3.0?V?s-1 by 2D titanium carbide (MXene) via N-doped carbon intercalation[J]. Mater. Lett., 2019, 234: 21-25.
[91] Zheng W, Zhang P G, Tian W B, Qin X, Zhang Y M, Sun Z M. Alkali treated Ti3C2Tx MXenes and their dye adsorption performance[J]. Mater. Chem. Phys., 2018, 206: 270-276.
[92] Lv G X, Wang J, Shi Z W, Fan L P. Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries[J]. Mater. Lett., 2018, 219: 45-50.
[93] Xuan J N, Wang Z Q, Chen Y Y, Liang D J, Cheng L, Yang X J, Liu Z, Ma R Z, Sasaki T, Geng F X. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angew. Chem. Int. Ed., 2016, 55(47): 14569-14574.
[94] Lu C J, Yang L, Yan B Z, Sun L B, Zhang P G, Zhang W, Sun Z M. Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis[J]. Adv. Funct. Mater., 2020, 30(47): 2000852.
[95] Yang C H, Tang Y, Tian Y P, Luo Y Y, Yin X T, Que W X. Methanol and diethanolamine assisted synthesis of flexible nitrogen-doped Ti3C2 (MXene) film for ultrahigh volumetric performance supercapacitor electrodes[C]. ACS Appl. Energy Mater., 2020, 3(1): 586-596.
[96] Li J B, Yan D, Hou S J, Li Y Q, Lu T, Yao Y F, Pan L K. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping[J]. J. Mater. Chem., 2018, 6: 1234-1243.
[97] Wen Y Y, Li R, Liu J H, Wei Z T, Li S A, Du L L, Zu K, Li Z X, Pan Y Y, Hu H. A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance[J]. J. Colloid Interface Sci., 2021, 604: 239-248.
[98] Pan Z H, Ji X H. Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors[J]. J. Power Sources, 2019, 439: 227068.
[99] Onyia I C, Ezeonu S O, Bessarabov D, Obodo K O. Density functional theory studies of transition metal doped Ti3N2 MXene monolayer[J]. Comput. Mater. Sci., 2021, 197: 110613.
[100] Meng Z, Zhang B K, Peng Q, Yu Y D, Zhou J, Sun Z M. MXenes modified by single transition metal atom for hydrogen evolution reaction catalysts[J]. Appl. Surf. Sci., 2021, 562: 150151.
[101] Zhao X F, Vashisth A, Prehn E, Sun W M, Shah S A, Habib T, Chen Y X, Tan Z Y, Lutkenhaus J L, Radovic M, Green M J. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions[J]. Matter, 2019, 1(2): 513-526.
[102] Zhu L, Lv J, Yu X F, Zhao H F, Sun C, Zhou Z P, Ying Y J, Tan L H. Further construction of MnO2 composite through in-situ growth on MXene surface modified by carbon coating with outstanding catalytic properties on thermal decomposition of ammonium perchlorate[J]. Appl. Surf. Sci., 2020, 502: 144171.
[103] Ji J J, Zhao L F, Shen Y F, Liu S Q, Zhang Y J. Covalent stabilization and functionalization of MXene via silylation reactions with improved surface properties[J]. FlatChem, 2019, 17: 100128.
[104] Feng Q, Fukang D, Kangchun L, Mingyuan D, Shuai Z, Fuchuan H. Enhancing the tribological performance of Ti3C2 MXene modified with tetradecylphosphonic acid[J]. Colloids Surf., 2021, 625: 126903.
[105] Lee G S, Yun T, Kim H, Kim I H, Choi J, Lee S H, Lee H J, Hwang H S, Kim J G, Kim D W, Lee H M, Koo C M, Kim S O. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability[J]. ACS Nano, 2020, 14(9): 11722-11732.
[106] Wang G X, Shen X P, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon, 2009, 47(8): 2049-2053.
[107] Zhang Y P, Wang L L, Xu H, Cao J M, Chen D, Han W. 3D Chemical cross-linking structure of black phosphorus@CNTs hybrid as a promising anode material for lithium ion batteries[J]. Adv. Funct. Mater., 2020, 30(12): 1909372.
[108] Leng K, Chen Z X, Zhao X X, Tang W, Tian B B, Nai C T, Zhou W, Loh K P. Phase restructuring in transition metal dichalcogenides for highly stable energy storage[J]. ACS Nano, 2016, 10(10): 9208-9215.
[109] Long X, Wang Z L, Xiao S, An Y M, Yang S H. Transition metal based layered double hydroxides tailored for energy conversion and storage[J]. Mater. Today, 2016, 19(4): 213-226.
[110] Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505.
[111] Murali S, Quarles N, Zhang L, Potts J R, Tan Z, Lu Y, Zhu Y, Ruoff R. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes[J]. Nano Energy, 2013, 2: 764-768.
[112] Xu H J, Fan J X, Su H, Liu C F, Chen G, Dall’Agnese Y, Gao Y. Metal ion-induced porous MXene for all-solid-state flexible supercapacitors[J]. Nano Lett., 2023, 23(1): 283-290.
[113] Zhang P, Li J P, Yang D Y, Soomro R, Xu B. Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors[J]. Adv. Funct. Mater., 2023, 33(1): 2209918.
[114] Xu P, Xiao H, Liang X, Zhang T F, Zhang F C, Liu C H, Lang B B, Gao Q M. A MXene-based EDA-Ti3C2Tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material[J]. Carbon, 2021, 173: 135-144.
[115] Li J, Yuan X T, Lin C, Yang Y Q, Xu L, Du X, Xie J L, Lin J H, Sun J L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification[J]. Adv. Energy Mater., 2017, 7(15): 1602725.
[116] Chen H W, Wang H P, Li C. Mechanically induced nanoscale architecture endows a titanium carbide MXene electrode with integrated high areal and volumetric capacitance[J]. Adv. Mater., 2022, 34(43): 2205723.
[117] Javed M S, Zhang X, Ali S, Mateen A, Idrees M, Sajjad M, Batool S, Ahmad A, Imran M, Najam T, Han W. Heterostructured bimetallic-sulfide@layered Ti3C2Tx-MXene as a synergistic electrode to realize high-energy-density aqueous hybrid-supercapacitor[J]. Nano Energy, 2022, 101: 107624.
[118] Wen Y Y, Rufford T E, Chen X Z, Li N, Lyu M, Dai L M, Wang L Z. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors[J]. Nano Energy, 2017, 38: 368-376.
[119] Yang C H, Tang Y, Tian Y P, Luo Y Y, Din M F U, Yin X T, Que W X. Flexible nitrogen-doped 2D titanium carbides (MXene) films constructed by an ex situ solvothermal method with extraordinary volumetric capacitance[J]. Adv. Energy Mater., 2018, 8(31): 1802087.
[120] Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Barsoum M W, Gogotsi Y. MXene: a promising transition metal carbide anode for lithium-ion batteries[J]. Electrochem. Commun., 2012, 16(1): 61-64.
[121] Luo J M, Tao X Y, Zhang J, Xia Y, Huang H, Zhang L Y, Gan Y P, Liang C, Zhang W K. Sn?? Ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance[J]. ACS Nano, 2016, 10(2): 2491-2499.
[122] Zhao Q, Zhu Q Z, Miao J W, Zhang P, Wan P B, He L Z, Xu B. Flexible 3D porous MXene foam for high-performance lithium-ion batteries[J]. Small, 2019, 15(51): 1904293.
[123] Luo J M, Zheng J H, Nai J W, Jin C B, Yuan H D, Sheng O W, Liu Y J, Fang R Y, Zhang W K, Huang H, Gan Y P, Xia Y, Liang C, Zhang J, Li W Y, Tao X Y. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance[J]. Adv. Funct. Mater., 2019, 29(10): 1808107.
[124] He X, Ni Y X, Li Y X, Sun H X, Lu Y, Li H X, Yan Z H, Zhang K, Chen J. An MXene-based metal anode with stepped sodiophilic gradient structure enables a large current density for rechargeable Na-O2 Batteries[J]. Adv. Mater, 2022, 34(15): 2106565.
[125] Zhang P, Soomro R A, Guan Z R X, Sun N, Xu B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage[J]. Energy Storage Mater., 2020, 29: 163-171.
[126] Sun N, Zhu Q Z, Anasori B, Zhang P, Liu H, Gogotsi Y, Xu B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Adv. Funct. Mater., 2019, 29(51): 1906282.
[127] Dong Y F, Shi H D, Wu Z S. Hybrid nanostructures: Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries[J]. Adv. Funct. Mater., 2020, 30(47): 2070310.
[128] Xie Y, Dall'Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R C. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries[J]. ACS Nano, 2014, 8(9): 9606-9615.
[129] Kaland H, Hadler‐Jacobsen J, Fagerli F H, Wagner N P, Wang Z, Selbach S M, Bruer F V, Wiik K, Schnell S K. Are MXenes suitable as cathode materials for rechargeable Mg batteries?[J]. Sustain. Energy and Fuels, 2020, 4: 2956-2966.
[130] Zhao M Q, Ren C E, Alhabeb M, Anasor B, Barsoum M W, Gogotsi Y. Magnesium-ion storage capability of MXenes[J]. ACS Appl. Energy Mater., 2019, 2(2): 1572-1578.
[131] Xu M, Lei S L, Qi J, Dou Q Y, Liu L Y, Lu Y L, Huang Q, Shi S Q, Yan X B. Opening magnesium storage capability of two-dimensional mxene by intercalation of cationic surfactant[J]. ACS Nano, 2018, 12(4): 3733-3740.
[132] Li Y, Lieu W Y, Ghosh T, Fu L, Feng X, Wong A J Y, Thakur A, Wyatt B C, Anasori B, Zhang Q, Yang H Y, She Z W. Double-transition-metal MXene films promoting deeply rechargeable magnesium metal batteries[J]. Small Methods, 2023, 7(8): 2201598.
[133] Xu M, Bai N, Li H X, Hu C, Qi J, Yan X B. Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries[J]. Chin. Chem. Lett., 2018, 29(8): 1313-1316.
[134] Yilmaz G, Yam K M, Zhang C, HongJin F, GhimWei H. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance[J]. Adv. Mater., 2017, 29(26): 1606814.
[135] Liu F F, Wang T T, Liu X B, Jiang N, Fan L Z. High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries[J]. Chem. Eng. J., 2021, 426: 130747.
[136] Xu L L, Xu Y, Liu L, Wang K P, Patterson D A, Wang J. Electrically responsive ultrafiltration polyaniline membrane to solve fouling under applied potential[J]. J. Membr. Sci., 2019, 572: 442-452.
文章导航

/