欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

高体积比容量二氧化锡颗粒嵌入碳包覆介孔氧化亚硅棒锂离子电池负极研究

  • 郭家林 ,
  • 李妮妮 ,
  • 郑鹏
展开
  • a商洛学院,陕西 商洛 726000
    b陕西科技大学,陕西 西安 710021

收稿日期: 2024-10-17

  修回日期: 2024-12-30

  录用日期: 2025-01-03

  网络出版日期: 2025-01-13

SnO2 Particles Embedded into Carbon Coated Mesoporous SiOx Rod as High Volumetric Capacity Anode for Lithium-Ion Batteries

  • Jia-Lin Guo ,
  • Ni-Ni Li ,
  • Peng Zheng
Expand
  • aShaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shang Luo University, Shang Luo 726000, Shaanxi, China
    bSchool of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, Shaanxi, China
#These authors contributed equally to this work.

Received date: 2024-10-17

  Revised date: 2024-12-30

  Accepted date: 2025-01-03

  Online published: 2025-01-13

摘要

与锂离子电池硅负极材料相比,氧化亚硅(SiOx)因其高比容量(1965 mAh·g−1)和适中的体积膨胀(160%)等优点而受到广泛关注。将二氧化硅(SiO2)还原制备成SiOx,并同时保持SiO2原有的纳米形貌,可以减弱硅负极材料的体积膨胀,是发展高性能负极材料的有效策略。本文选择以介孔SiO2棒为原料,通过一步高温退火法,将二氧化锡(SnO2)颗粒嵌入碳涂层,制备了介孔SiOx-SnO2@C棒复合材料。将其作为锂离子电池负极材料,具有以下结构优点:SnO2颗粒弥散分布于棒的体相中,增加了体积能量密度;包覆的碳层能有限维持SiOx在嵌脱锂过程中的结构稳定性;介孔通道有利于提高锂离子扩散速率并缓冲体积膨胀。利用这些结构特性,在0.1 A·g−1电流密度下,其重量和体积比容量分别高达1271 mAh·g-1和1573 mAh·cm-3,且历经200个循环后,容量保持率为95%。

本文引用格式

郭家林 , 李妮妮 , 郑鹏 . 高体积比容量二氧化锡颗粒嵌入碳包覆介孔氧化亚硅棒锂离子电池负极研究[J]. 电化学, 2025 , 31(2) : 2410171 . DOI: 10.61558/2993-074X.3520

Abstract

Due to the high capacity and moderate volume expansion of silicon protoxide SiOx (160%) compared with that of Si (300%), reducing silicon dioxide SiO2 into SiOx while maintaining its special nano-morphology makes it attractive as an anode of Li-ion batteries. Herein, through a one-pot facile high-temperature annealing route, using SBA15 as the silicon source, and embedding tin dioxide SnO2 particles into carbon coated SiOx, the mesoporous SiOx-SnO2@C rod composite was prepared and tested as the anode material. The results revealed that the SnO2 particles were distributed uniformly in the wall, which could further improve their volume energy densities. The coated carbon plays a role in maintaining structural integrality during lithiation, and the rich mesopores structure can release the expanded volume and enhance Li-ion transfer. At 0.1 A·g-1, the gravimetric and volumetric capacities of the composite were as high as 1271 mAh·g-1and 1573 mAh·cm-3, respectively. After 200 cycles, the 95% capacity could be retained compared with that upon the 2nd cycle at 0.5 A·g-1. And the rod morphology was well kept, except that the diameter of the rod was 3 times larger than its original size after the cell was discharged into 0.01 V.

参考文献

[1] Pendashteh A, Tomey R, Vilatela J. Nanotextile 100% Si anodes for the next generation energy-dense Li-ion batteries[J]. Adv. Energy Mater., 2024, 14(16): 2304018.
[2] Lu B, Ma B J, Deng X L, Li W W, Wu Z Y, Shu H B, Wang X Y. Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application of Li-ion battery[J]. ACS Appl. Mater. Interfaces, 2017, 9(38): 32829-32839.
[3] Xu G L, Xiao L, Sheng T, Liu J, Hu Y X, Ma T, Amine R, Xie Y, Zhang X, Liu, Y. Electrostatic self-assembly enabling integrated bulk and interfacial sodium storage in 3D titania-graphene hybrid[J]. Nano Lett., 2018, 18(1): 336-346.
[4] Kalluri S, Yoon M, Jo M, Park S, Myeong S, Kim J, Dou S X, Guo Z, Cho J. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells[J]. Adv. Energy Mater., 2017, 7(1): 1601507.
[5] Meng B C, Yu J, Peng J X, Wei Y B, Zhu F, Chen T X, Yang N X, Chuan X, Li L B. Combine natural stibnite with bio-carbon: A high-capacity composite anode material for lithium-ion battery[J]. JOM, 2023, 75(7): 2626-2635.
[6] Ma Y, Zheng Y, Xu M, Huang S, Yuan G H. One-step binding and wrapping fragmented natural microcrystalline graphite via phenolic resin into secondary particles for high-performance lithium-ion battery anode[J]. JOM, 2023, 75(12): 5321-5330.
[7] Xia X, Qian X Y, Chen C, Li W Y, He D F, He G Y, Chen H Q. Recent progress of Si-based anodes in the application of lithium-ion batteries[J]. J. Energy Storage, 2023, 72: 108715.
[8] Liu Y B, Liu X Y, Zhu Y L, Wang J W, Ji W W, Liu X Z. Scalable synthesis of pitch-coated nanoporous Si/graphite composite anodes for lithium-ion batteries[J]. Energy Fuels, 2023, 37(6): 4624-4631.
[9] Li Y F, Li Q M, Chai J L, Wang Y T, Du J K, Chen Z Y, Rui Y C, Jiang L, Tang B H J. Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress[J]. ACS Mater. Lett., 2023, 5(11): 2948-2970.
[10] Ming H, Qiu J Y, Zhang S T, Li M, Zhu X Y, Wang L M, Ming J. Constructing dense SiOx@carbon nanotubes versus spinel cathode for advanced high-energy lithium-ion batteries[J]. ChemElectroChem, 2017, 4(5): 1165-1171.
[11] Liu Q, Cui Z, Zou R J, Zhang J H, Xu K B, Hu J Q. Surface coating constraint induced anisotropic swelling of silicon in Si-void@SiOx nanowire anode for lithium-ion batteries[J]. Small, 2017, 13(13): 1603754.
[12] Fu R S, Zhang K L, Zaccaria R P, Huang H R, Xia Y G, Liu Z P. Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries[J]. Nano Energy, 2017, 39: 546-553.
[13] Chen P H, Wu H, Huang S S, Zhang Y. Template synthesis and lithium storage performances of hollow spherical LiMn2O4 cathode materials[J]. Ceram. Int., 2016, 42(8): 10498-10505.
[14] Wu G L, Jia Z R, Cheng Y H, Zhang H X, Zhou X F, Wu H J. Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries[J]. Appl. Surf. Sci., 2019, 464: 472-478.
[15] Liu Y, Haridas A. K., Lee Y., Cho K K, Ahn J H. Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries[J]. Appl. Surf. Sci., 2019, 472: 135-142.
[16] Ma T Y, Yu X N, Li H Y, Zhang W G, Cheng X L, Zhu W T, Qiu X P. High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries[J]. Nano Lett., 2017, 17(6): 3959-3964.
[17] Zhou Z W, Liu Y T, Xie X M, Ye X Y. Constructing novel Si@SnO2 core-shell heterostructures by facile self-assembly of SnO2 nanowires on silicon hollow nanospheres for large, reversible lithium storage[J]. Appl. Surf. Sci., 2016, 8(11): 7092-7100.
[18] Lei Y, Li S, Du M, Mi J, Gao D C, Hao L, Jiang L J, Luo M, Jiang W Q, Li F, Wang S H. Preparation of double-shell Si@SnO2@C nanocomposite as anode for lithium-ion batteries by hydrothermal method[J]. Rare Met., 2023, 42(9): 2972-2981.
[19] Ji X L, Lee K T, Monjauze M, Nazar L F. Strategic synthesis of SBA-15 nanorods[J]. Chem. Commun., 2008, 36: 4288-4290.
[20] Zhang N, Zhao Q, Han X P, Yang J G, Chen J. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries[J]. Nanoscale, 2014, 6(5): 2827-2832.
[21] Ren D Z, Huang H, Qi J G, Zheng P. One-pot template-free cross-linking synthesis of SiOx-SnO2@C hollow spheres as a high volumetric capacity anode for lithium-ion batteries[J]. Energy Technol., 2020, 8(7): 2000314.
[22] Liu Y H, Xu Y H, Zhu Y J, Culver J N, Lundgren C A, Xu K, Wang C S. Tin-coated viral nanoforests as sodium-ion battery anodes[J]. ACS Nano, 2013, 7(4): 3627-3634.
[23] Chang P, Liu X X, Zhao Q J, Huang Y Q, Huang Y H, Hu X L. Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(37): 31879-31886.
[24] Murugesan S, Harris J T, Korgel B A, Stevenson K J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries[J]. Chem. Mater., 2012, 24(7): 1306-1315.
[25] Zheng P, Liu T, Guo S W. Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries[J]. Sci. Rep., 2016, 6: 35620.
[26] Zheng P, Liu T, Yuan X Y, Zhang L F, Liu Y, Huang J F, Guo S W. Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode[J]. Sci. Rep., 2016, 6: 26246.
[27] Michelson A, Zhang H H, Xiang S T, Gang O. Engineered silicon carbide three-dimensional frameworks through DNA-prescribed assembly[J]. Nano Lett., 2021, 21(4): 1863-1870.
[28] Ren Y R, Li M Q. Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance[J]. J. Power Sources, 2016, 306: 459-466.
[29] Hu Y S, Demir-Cakan R, Titirici M M, Müller J O, Schl?gl R, Antonietti M, Maier J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angew. Chem., Int. Ed., 2008, 47(9): 1645-1649.
[30] Zheng P, Su J X, Wang Y B, Zhou W, Song J J, Su Q M, Reeves-McLaren N, Guo S W. A high-performance primary nanosheet heterojunction cathode composed of Na0.44MnO2 tunnels and layered Na2Mn3O7 for Na-ion batteries[J]. ChemSusChem, 2020, 13(7): 1793-1799.
[31] Liu Z H, Yu Q, Zhao Y L, He R H, Xu M, Feng S H, Li S D, Zhou L, Mai L Q. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48(1): 285-309.
文章导航

/