欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

用于光催化和电化学应用的纳米结构石墨氮化碳

  • Muhammad Abdul Qadeer ,
  • Iqra Fareed ,
  • Asif Hussain ,
  • Muhammad Asim Farid ,
  • Sadia Nazir ,
  • Faheem K. Butt ,
  • 邹吉军 ,
  • Muhammad Tahir ,
  • Shangfeng Du
展开
  • a天津大学化工学院,天津 300072,中国
    b西安交通大学化学工程与技术学院,西安 710049,中国
    c奇纳布大学物理科学系,古吉拉特邦 50700,旁遮普邦,巴基斯坦
    d生态材料和可持续技术实验室(LEMST),自然科学和人文系,新校区,UET 拉合尔,54890,巴基斯坦
    e拉合尔大学物理系,巴基斯坦拉合尔
    f教育大学科学技术部化学系,54770 拉合尔,巴基斯坦
    g教育大学科学技术部物理系,54770 拉合尔,巴基斯坦
    h伯明翰大学化学工程学院,伯明翰 B15 2TT,英国

收稿日期: 2024-05-30

  修回日期: 2024-08-07

  录用日期: 2024-09-25

  网络出版日期: 2024-09-25

Nanostructured Graphitic Carbon Nitride for Photocatalytic and Electrochemical Applications

  • Abdul Qadeer Muhammad ,
  • Fareed Iqra ,
  • Hussain Asif ,
  • Asim Farid Muhammad ,
  • Nazir Sadia ,
  • K. Butt Faheem ,
  • Zou Ji-Jun ,
  • Tahir Muhammad ,
  • Du Shang-Feng
Expand
  • aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    bSchool of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
    cDepartment of Physical Sciences, The University of Chenab Adjacent Chenab Bridge, Gujrat 50700, Punjab, Pakistan
    dLaboratory of Eco-Materials and Sustainable Technology (LEMST), Natural Sciences and Humanities Department, New Campus, UET Lahore, 54890, Pakistan
    eDepartment of Physics, The University of Lahore, Lahore, Pakistan
    fDepartment of Chemistry, Division of Science & Technology, University of Education, 54770 Lahore, Pakistan
    gDepartment of Physics, Division of Science & Technology, University of Education, 54770 Lahore, Pakistan
    hSchool of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK.
First author contact:

#Muhammad Abdul Qadeer, Iqra Fareed, these authors contributed equally.

*Ji-Jun Zou, E-mail: jj_zou@tju.edu.cn,
Muhammad Tahir, E-mail: m.tahir.3@bham.ac.uk

Received date: 2024-05-30

  Revised date: 2024-08-07

  Accepted date: 2024-09-25

  Online published: 2024-09-25

摘要

石墨氮化碳(g-C3N4)因其出色的机械和热学特性而成为一种有价值的材料,可应用于光电转换器件、有机化合物合成的加速器、燃料电池应用或电源的电解质,以及储氢物质和荧光检测器等领域。g-C3N4可以采用不同的方法制备,且可得到多种形态和纳米结构,如为不同用途而设计的零到三维材料。近年来关于g-C3N4的报道很多,但缺乏涵盖纳米结构尺寸及其性质的全面综述。本文旨在对g-C3N4的光催化和电催化用途提供基本和全面的了解。通过涵盖合成方法、尺寸、形貌、应用和性能,重点介绍了g-C3N4纳米结构设计的最新进展。除了总结之外,我们还将讨论挑战和前景。从事g-C3N4纳米结构相关研究及各种应用的科学家、研究人员和工程师可能会发现我们的综述论文是有用的资源。

本文引用格式

Muhammad Abdul Qadeer , Iqra Fareed , Asif Hussain , Muhammad Asim Farid , Sadia Nazir , Faheem K. Butt , 邹吉军 , Muhammad Tahir , Shangfeng Du . 用于光催化和电化学应用的纳米结构石墨氮化碳[J]. 电化学, 2025 , 31(1) : 2416001 . DOI: 10.61558/2993-074X.3498

Abstract

Graphitic carbon nitride (g-C3N4) exhibits great mechanical as well as thermal characteristics, making it a valuable material for use in photoelectric conversion devices, an accelerator for synthesis of organic compounds, an electrolyte for fuel cell applications or power sources, and a hydrogen storage substance and a fluorescence detector. It is fabricated using different methods, and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes. There are many reports about g-C3N4 in recent years, but a comprehensive review which covers nanostructure dimensions and their properties are missing. This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C3N4. It highlights the recent progress of g-C3N4 nanostructure designing by covering synthesis methods, dimensions, morphologies, applications and properties. Along with the summary, we will also discuss the challenges and prospects. Scientists, investigators, and engineers looking at g-C3N4 nanostructures for a variety of applications might find our review paper to be a useful resource.

参考文献

[1] Liu J, Wang H Q, Antonietti M. Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis[J]. Chem. Soc. Rev., 2016, 45(8): 2308-2326.
[2] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[3] Hasan M, Ali S, Khan M, Rizwan M, Zulqarnain M, Hussain A. Structural, optical, electrical and magnetic tuning based on Zn substitution at a site in yttrium doped spinel ferrites[J]. Mater. Chem. Phys., 2023, 301: 127538.
[4] Mosali v S S, Zhang X, Liang Y, Li L, Puxty G, Horne M D, Brajter-Toth A, Bond A M, Zhang J. CdS-enhanced ethanol selectivity in electrocatalytic CO2 reduction at sulfide-derived Cu-Cd[J]. ChemSusChem, 2021, 14(14): 2924-2934.
[5] Ahamed S T, Kulsi C, Banerjee D, Srivastava D N, Mondal A. Synthesis of multifunctional CdSe and Pd quantum dot decorated CdSe thin films for photocatalytic, electrocatalytic and thermoelectric applications[J]. Surf. Interfaces, 2021, 25: 101149.
[6] Caglar A, Er O F, Aktas N, Kivrak H. The effect of different carbon-based CdTe alloys for efficient photocatalytic glucose electrooxidation[J]. J. Electroanal. Chem., 2022, 920: 116611.
[7] Goti? M, Musi? S, Ivanda M, ?oufek M, Popovi? S. Synthesis and characterisation of bismuth (III) vanadate[J]. J. Mol. Struct., 2005, 744: 535-540.
[8] Park Y, Mcdonald K J, Choi K S. Progress in bismuth vanadate photoanodes for use in solar water oxidation[J]. Chem. Soc. Rev., 2013, 42(6): 2321-2337.
[9] Chen Y, Wang D K, Deng X Y, Li Z H. Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction[J]. Catal. Sci. Technol., 2017, 7(21): 4893-4904.
[10] Labhasetwar N, Saravanan G, Megarajan S K, Manwar N, Khobragade R, Doggali P, Grasset F. Perovskite-type catalytic materials for environmental applications[J]. Sci. Technol. Adv. Mat., 2015, 16: 036002.
[11] Vyas Y, Chundawat P, Dharmendra D, Chaubisa P, Kumar M, Punjabi P B, Ameta C. Revolutionizing fuel production through biologically synthesized zero-dimensional nanoparticles[J]. Nanoscale Adv., 2023, 5(18): 4833-4851.
[12] Deng J Y, Zhu S L, Zheng J F, Nie L H. Preparation of multi-dimensional (1D/2D/3D) carbon/g-C3N4 composite photocatalyst with enhanced visible-light catalytic performance[J]. J. Colloid Interf. Sci., 2020, 569: 320-331.
[13] Huang D L, Li Z H, Zeng G M, Zhou C Y, Xue W J, Gong X M, Yan X L, Chen S, Wang W J, Cheng M. Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance[J]. Appl. Catal. B-Environ., 2019, 240: 153-173.
[14] Yuan Y J, Shen Z K, Wu S T, Su Y B, Pei L, Ji Z G, Ding M Y, Bai W F, Chen Y F, Yu Z T, Zou ZG. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2production activity[J]. Appl. Catal. B-Environ., 2019, 246: 120-128.
[15] Tang J, Guo C Y, Wang T T, Cheng X L, Huo L H, Zhang X F, Huang C B, Major Z, Xu Y M. A review of g‐C3N4‐based photocatalytic materials for photocatalytic CO2 reduction[J]. Carbon Neutralization, 2024, 3(4): 557-583
[16] Ma D D, Zhang Z M, Zou Y J, Chen J T, Shi J W. The progress of g-C3N4 in photocatalytic H2evolution: From fabrication to modification[J]. Coord. Chem. Rev., 2024, 500: 215489.
[17] Zhang X L, Chen S Y, Guo F S, Jing Q, Huo P P, Feng L, Sun F Z, Chandrasekar S, Hao L T, Liu B. A novel method for synthesizing specific surface area modulable g-C3N4 photocatalyst with maize-like structure[J]. Appl. Surf. Sci., 2024, 651: 159224.
[18] Anus A, Park S. The synthesis and key features of 3D carbon nitrides (C3N4) used for CO2photoreduction[J]. Chem. Eng. J., 2024, 486: 150213.
[19] Sheng W B, Li W, Tan D M, Zhang P P, Zhang E, Sheremet E, Schmidt B V K J, Feng X L, Rodriguez R D, Jordan R, Amin I. Polymer brushes on graphitic carbon nitride for patterning and as a SERS active sensing layer via incorporated nanoparticles[J]. ACS Appl. Mater. Interfaces, 2020, 12(8): 9797-9805.
[20] Muhammad M H, Chen X L, Liu Y Y, Shi T, Peng Y Y, Qu L B, Yu B. Recyclable Cu@C3N4-catalyzed hydroxylation of aryl boronic acids in water under visible light: synthesis of phenols under ambient conditions and room temperature[J]. ACS Sustainable Chem. Eng., 2020, 8(7): 2682-2687.
[21] Jin C, Li W, Chen Y S, Li R, Huo J B, He Q Y, Wang Y Z. Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C3N4 nanosheets[J]. Ind. Eng. Chem. Res., 2020, 59(7): 2860-2873.
[22] Song C, Li X J, Hu L H, Shi T F, Wu D, Ma H M, Zhang Y, Fan D W, Wei Q, Ju H X. Quench-type electrochemiluminescence immunosensor based on resonance energy transfer from carbon nanotubes and Au-nanoparticles-enhanced g-C3N4 to CuO@polydopamine for procalcitonin detection[J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8006-8015.
[23] Zhang Y W, Liu J H, Wu G, Chen W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J]. Nanoscale, 2012, 4(17): 5300-5303.
[24] Hussain A, Tahir M, Yang W, Ji R L, Zheng K W, Umer M, Ahmad S M, Boota M, Iftikhar A, Raza A, Rehman Z U, Ahmad N, Busquets R, Hou J H, Wang X Z. Synergic effect among activated carbon/sulphur-assisted graphitic carbon nitride for enhanced photocatalytic activity[J]. Diam. Relat. Mater., 2023, 135: 109836.
[25] Hussain A, Maqsood S, Ji R L, Zhang Q K, Farooq M U, Boota M, Umer M, Hashim M, Naeem H, Toor Z S, Ali A, Hou J H, Xue Y X, Wang X Z. Investigation of transition metal-doped graphitic carbon nitride for MO dye degradation[J]. Diam. Relat. Mater., 2023, 132: 109648.
[26] Hou J H, Wang H Y, Qin R R, Zhang Q K, Wu D, Hou Z H, Yang W, Hussain A, Tahir M, Yin W Q, Wang X Z. Grinding preparation of 2D/2D g-C3N4/BiOCl with oxygen vacancy heterostructure for improved visible-light-driven photocatalysis[J]. Carbon Res., 2024, 3(1): 1-12.
[27] Ul Hassan H M, Tawab S A, Khan M, Hussain A, Elsaeedy H, Almutairi B S, Hassan A, Raza A. Reduce the recombination rate by facile synthesis of MoS2/g-C3N4heterostructures as a solar light responsive catalyst for organic dye degradation[J]. Diam. Relat. Mater., 2023, 140: 110420.
[28] Fageria P, Sudharshan K, Nazir R, Basu M, Pande S. Decoration of MoS2 on g-C3N4surface for efficient hydrogen evolution reaction[J]. Electrochim. Acta, 2017, 258: 1273-1283.
[29] Liu X L, Ma R, Zhuang L, Hu B W, Chen J R, Liu X Y, Wang X K. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants[J]. Crit. Rev. Env. Sci. Tec., 2021, 51(8): 751-790.
[30] Yang X L, Qian F F, Zou G J, Li M L, Lu J R, Li Y M, Bao M T. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J]. Appl. Catal. B-Environ., 2016, 193: 22-35.
[31] Xu Q L, Zhu B C, Cheng B, Yu J G, Zhou M H, Ho W K. Photocatalytic H2 evolution on graphdiyne/g-C3N4hybrid nanocomposites[J]. Appl. Catal. B: Environ., 2019, 255: 117770.
[32] Jiang T, Wang Z W, Wei G, Wu S X, Huang L Q, Li D R, Ruan X F, Liu Y C, Jiang C Z, Ren F. Defective high-crystallinity g-C3N4 heterostructures by double-end modulation for photocatalysis[J]. ACS Energy Lett., 2024, 9(4): 1915-1922.
[33] Lin S, Sun Z W, Qiu X Y, Li H, Ren P D, Xie H J, Guo L. Construction of embedded sulfur‐doped g‐C3N4/BiOBr S‐scheme heterojunction for highly efficient visible light photocatalytic degradation of organic compound Rhodamine B[J]. Small, 2024, 20(14): 2306983.
[34] Hou G L, Dong W J, Li Z F, Cao X H, Zou L X, Liu Y H, Zhang Z B. Donor-Acceptor characteristic g-C3N4 hollow nanospheres heterojunctions for efficient photocatalytic uranium reduction[J]. J. Solid State Chem., 2024, 336: 124739.
[35] Rostami M, Jourshabani M, Davar F, Ziarani G M, Badiei A. Black TiO2‐g‐C3N4 heterojunction coupled with MOF (ZIF‐67)‐derived Co3S4/nitrogen‐doped carbon hollow nanobox[J]. J. Am. Ceram. Soc., 2024, 107(2): 719-735.
[36] Xu J X, Chen Y F, Chen M, Wang J, Wang L. In situ growth strategy synthesis of single-atom nickel/sulfur co-doped g-C3N4 for efficient photocatalytic tetracycline degradation and CO2 reduction[J]. Chem. Eng. J., 2022, 442: 136208.
[37] Kong L R, Mu X J, Fan X X, Li R, Zhang Y T, Song P, Ma F C, Sun M T. Site-selected N vacancy of g-C3N4 for photocatalysis and physical mechanism[J]. Appl. Mater. Today, 2018, 13: 329-338.
[38] Dong G H, Jacobs D L, Zang L, Wang C Y. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets[J]. Appl. Catal. B-Environ., 2017, 218: 515-524.
[39] Huang Y Y, Li D, Fang Z Y, Chen R J, Luo B F, Shi W D. Controlling carbon self-doping site of g-C3N4 for highly enhanced visible-light-driven hydrogen evolution[J]. Appl. Catal. B-Environ., 2019, 254: 128-134.
[40] Jiang L B, Yuan X Z, Zeng G M, Liang J, Wu Z B, Yu H B, Mo D, Wang H, Xiao Z H, Zhou C Y. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation[J]. J. Colloid Interf. Sci., 2019, 536: 17-29.
[41] Liu Y Y, Zheng Y M, Zhang W J, Peng Z B, Xie H, Wang Y X, Guo X L, Zhang M, Li R, Huang Y. Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation[J]. J. Mater. Sci. Technol., 2021, 95: 127-135.
[42] Liu M Q, Jiao Y Y, Qin J C, Li Z J, Wang J S. Boron doped C3N4nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance[J]. Appl. Surf. Sci., 2021, 541: 148558.
[43] Wang N, Cheng L, Liao Y L, Xiang Q J,. Effect of Functional Group Modifications on the Photocatalytic Performance of g-C3N4[J]. Small, 2023, 19(27): 2300109.
[44] Pei J X, Li H F, Zhuang S L, Zhang D W, Yu D C. Recent advances in g-C3N4 photocatalysts: A review of reaction parameters, structure design and exfoliation methods[J]. Catalysts, 2023, 13(11): 1402.
[45] Alaghmandfard A, Ghandi K. A comprehensive review of graphitic carbon nitride (g-C3N4)-metal oxide-based nanocomposites: Potential for photocatalysis and sensing[J]. Nanomaterials, 2022, 12(2): 294.
[46] Groenewolt M, Antonietti M. Synthesis of g‐C3N4 nanoparticles in mesoporous silica host matrices[J]. Adv. Mater., 2005, 17(14): 1789-1792.
[47] Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew. Chem. Int. Ed., 2012, 51(1): 68-89.
[48] Zhang G G, Lan Z A, Lin L H, Lin S, Wang X C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents[J]. Chem. Sci., 2016, 7(5): 3062-3066.
[49] Wang X C, MaedA K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8(1): 76-80.
[50] Praus P, Smykalová A, Foniok K, Novák V, Hrbá? J. Doping of graphitic carbon nitride with oxygen by means of cyanuric acid: Properties and photocatalytic applications[J]. J. Environ. Chem. Eng., 2021, 9(4): 105498.
[51] Praus P, Svoboda L, Ritz M, Troppová I, ?ihor M, Ko?í K. Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide[J]. Mater. Chem. Phys., 2017, 193: 438-446.
[52] Wang W J, Yu J C, Shen Z R, Chan D K L, Gu T. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application[J]. Chem. Commun., 2014, 50(70): 10148-101450.
[53] Sun B, Lu N, Su Y, Yu H T, Meng X Y, Gao Z M. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance[J]. Appl. Surf. Sci., 2017, 394: 479-487.
[54] Pang X H, Bian H J, Wang W J, Liu C, Khan M S, Wang Q, Qi J N, Wei Q, Du B. A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV[J]. Biosens. Bioelectron., 2017, 91: 456-464.
[55] Hayat A, Sohail M, El Jery A, Al‐Zaydi K M, Alshammari K F, Khan J, Ali H, Ajmal Z, Taha T, UD D I. Different dimensionalities, morphological advancements and engineering of g-C3N4-based nanomaterials for energy conversion and storage[J]. Chem. Rec., 2023, 23(5): e202200171.
[56] Wang L J, Zhou G, Tian Y, Yan L K, Deng M X, Yang B, Kang Z H, Sun H Z. Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design[J]. Appl. Catal. B: Environ., 2019, 244: 262-271.
[57] Wang H, Yuan X Y, Wang H, Chen X H, Wu Z B, Jiang L B, Xiong W P, Zeng G M. Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance[J]. Appl. Catal. B: Environ., 2016, 193: 36-46.
[58] Tahir M, Cao C, Mahmood N, Butt F K, Mahmood A, Idrees F, Hussain S, Tanveer M, Ali Z, Aslam I. Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties[J]. ACS Appl. Mater. & Interfaces, 2014, 6(2): 1258-1265.
[59] Zhang M Y, Sun Y, Chang X, Zhang P. Template-free synthesis of one-dimensional g-C3N4chain nanostructures for efficient photocatalytic hydrogen evolution[J]. Front. Chem., 2021, 9: 652762.
[60] Wang L, Zhang W Y, Su Y G, Liu Z L, Du C F. Halloysite derived 1D mesoporous tubular g-C3N4: Synergy of template effect and associated carbon for boosting photocatalytic performance toward tetracycline removal[J]. Appl. Clay Sci., 2021, 213: 106238.
[61] Kadi M W, Mohamed R M, Bahnemann D W. Controlled synthesis of Ag2O/g-C3N4heterostructures using soft and hard templates for efficient and enhanced visible-light degradation of ciprofloxacin[J]. Ceram. Int., 2021, 47(22): 31073-31083.
[62] He F, Chen G, Miao J W, Wang Z X, Su D M, Liu S, Cai W Z, Zhang L P, Hao S, Liu B. Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2evolution[J]. ACS Energy Lett., 2016, 1(5): 969-975.
[63] Jiang Z X, Zhang X, Chen H S, Hu X, Yang P. Formation of g‐C3N4 nanotubes towards superior photocatalysis performance[J]. ChemCatChem, 2019, 11(18): 4558-4567.
[64] Iqbal N, Afzal A, Khan I, Khan M S, Qurashi A. Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications[J]. Sci. Rep.-UK, 2021, 11(1): 16886.
[65] Lu X F, Gai L G, Cui D F, Wang Q, Zhao X, Tao X T. Synthesis and characterization of C3N4 nanowires and pseudocubic C3N4 polycrystalline nanoparticles[J]. Mater. Lett., 2007, 61(21): 4255-4258.
[66] Long D, Chen W L, Rao X, Zheng S H, Zhang Y P. Synergetic effect of C60/g‐C3N4 nanowire composites for enhanced photocatalytic H2evolution under visible light irradiation[J]. ChemCatChem, 2020, 12(7): 2022-2031.
[67] Pasupuleti K S, Ghosh S, Jayababu N, Kang C J, Cho H D, Kim S G, Kim M D. Boron doped g-C3N4quantum dots based highly sensitive surface acoustic wave NO2sensor with faster gas kinetics under UV light illumination[J]. Sensor Actuat. B-Chem., 2023, 378: 133140.
[68] Medetalibeyo?lu H. An investigation on development of a molecular imprinted sensor with graphitic carbon nitride (g-C3N4) quantum dots for detection of acetaminophen[J]. Carbon Lett., 2021, 31(6): 1237-1248.
[69] He Y, Zhu Y F, Wu N Z. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance[J]. J. Solid State Chem., 2004, 177(11): 3868-3872.
[70] Chen L maigbay M A, Li M, Qiu X Q. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications[J]. Advanced Powder Materials, 2023, 3(1): 100150.
[71] Raziq F, Hayat A, Humayun M, Baburao Mane S K, Faheem M B, AlI A, Zhao Y, Han S B, Cai C, Li W, Qi D C, Yi J B, Yu X J, Breese M B H, Hassan F, Ali F, Mavlonov A, Dhanabalan K, Xiang X, Zu X T, Li S, Qiao L. Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites[J]. Appl. Catal. B: Environ., 2020, 270: 118867.
[72] Yan P C, Jin Y C, Xu L, Mo Z, Qian J C, Chen F, Yuan J J, Xu H, Li H N. Enhanced photoelectrochemical aptasensing triggered by nitrogen deficiency and cyano group simultaneously engineered 2D carbon nitride for sensitively monitoring atrazine[J]. Biosens. Bioelectron., 2022, 206: 114144.
[73] Liang D, Luo J J, Liang X, Wang H X, Wang J X, Qiu X Q. An “on-off-super on” photoelectrochemical sensor based on quenching by Cu-induced surface exciton trapping and signal amplification of copper sulfide/porous carbon nitride heterojunction[J]. Chemosphere, 2021, 267: 129218.
[74] VijetA A, Casadevall C, Roy S, Reisner E. Visible-light promoted C-O bond formation with an integrated carbon nitride-nickel heterogeneous photocatalyst[J]. Angew. Chem. Int. Ed., 2021, 60(15): 8494-8499.
[75] Chen L, Maigbay M A, Li M, Qiu X Q. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications[J]. Adv. Powder Mater., 2024, 3(1): 100150.
[76] Muhammad B, Rehman Z U, Butt F K, Jrar J A, Yang X, Zheng K W, Hussain A, Wang C Y, Hou J H. Vanadium doped nickel oxide/g-C3N4 composites for multifunctional biosensing of dopamine, ascorbic acid and H2O2[J]. Ceram. Int., 2024, 50(18): 34091-34100.
[77] Ullah S, Hussain A, Farid M A, Anjum F, Amin R, Du S F, Zou J J, Huang Z F, Tahir M. Sulfurization of bimetallic (Co and Fe) oxide and alloy decorated on multi-walled carbon nanotubes as efficient bifunctional electrocatalyst for water splitting[J]. Heliyon, 2024, 10(12): e32989.
[78] Ali A, Farid M A, Amin M, Hussain A, Hou J H, Huang Z F, Du S F, Tahir M. Enhanced photocatalytic activities of FCNO nanoparticles on graphitic carbon nitride[J]. Diam. Relat. Mater., 2024, 146: 111243.
[79] Nazir S, Noor N, Hussain A, Naseem S, Riaz S, Laref A, Mumtaz S, Ibrahim A. DFT study of rare-earth ferromagnetic spinels HgNd2Z4 (Z= S, Se) for spintronics applications[J]. J. Rare Earth., 2024, DOI: 10.1016/j.jre.2024.05.004.
[80] Lin Z Z, Wang X C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angew. Chem. Int. Ed., 2013, 52(6): 1735-1738.
[81] Dong G P, Zhang Y H, Pan Q W, Qiu J R. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties[J]. J. Photoch. Photobio. C, 2014, 20: 33-50.
[82] Li Y H, Ho W K, Lv K L, Zhu B C, Lee S C. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets[J]. Appl. Surf. Sci., 2018, 430: 380-389.
[83] Zhang K F, Zhou W, Zhang X C, Sun B J, Wang L, Pan K, Jiang B J, Tian G, Fu H G. Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts[J]. Appl. Catal. B: Environ., 2017, 206: 336-343.
[84] Cao Y Z, Gao Q, Li Q, Jing X B, Wang S F, wang W. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity[J]. RSC Adv., 2017, 7(65): 40727-40733.
[85] Chen X J, Shi R, Chen Q, Zhang Z J, Jiang W J, Zhu Y F, Zhang T R. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting[J]. Nano Energy, 2019, 59: 644-650.
[86] Lin B, Yang G D, Yang B L, Zhao Y X. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity[J]. Appl. Catal. B: Environmen., 2016, 198: 276-285.
[87] Rono N, Kibet J K, Martincigh B S, Nyamori V O. A review of the current status of graphitic carbon nitride[J]. Crit. Rev. Solid State, 2021, 46(3): 189-217.
[88] Sohail M, Anwar U, Taha T, Qazi H, Al-Sehemi A G, Ullah S, Algarni H, Ahmed I, Amin M A, Palamanit A. Nanostructured materials based on g-C3N4 for enhanced photocatalytic activity and potentials application: A review[J]. Arab. J. Chem., 2022, 15(9): 104070.
[89] Ma T Y, Dai S, Jaroniec M, Qiao S Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angew. Chem. Int. Ed., 2014, 53(28): 7281-7285.
[90] Lam S M, Sin J C, Abdullah A Z, Mohamed A R. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review[J]. Desalin. Water Treat., 2012, 41(1-3): 131-169.
[91] Shanker U, Rani M, Jassal V. Degradation of hazardous organic dyes in water by nanomaterials[J]. Environ. Chem. Lett., 2017, 15(4): 623-642.
[92] Fareed I, Farooq M U H, Khan M D, Yunas M F, Sandali Y, Ali Z, Tanveer M, Butt F K. Comprehensive investigations into the synergy of S-scheme heterojunction between nitrogen-doped ZnO nano-rods and g-C3N4 nanosheets for improved photocatalytic degradation[J]. Mater. Chem. Phys., 2024, 316: 129062.
[93] Al-Nuaim M A, AlwasitI A A, Shnain Z Y. The photocatalytic process in the treatment of polluted water[J]. Chem. Pap., 2023, 77(2): 677-701.
[94] Li Y F, Xia Z L, Yang Q, Wang L X, Xing Y. Review on g-C3N4-based S-scheme heterojunction photocatalysts[J]. J. Mater. Sci. Technol., 2022, 125: 128-144.
[95] Tahir M, Cao C, Butt F K, Butt S, Idrees F, Ali Z, Aslam I, Tanveer M, Mahmood A, Mahmood N. Large scale production of novel g-C3N4 micro strings with high surface area and versatile photodegradation ability[J]. CrystEngComm, 2014, 16(9): 1825-1830.
[96] Tahir M, Cao C, Butt F K, Idrees F, Mahmood N, Ali Z, Aslam I, Tanveer M, Rizwan M, Mahmood T. Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis[J]. J. Mater. Chem. A, 2013, 1(44): 13949-13955.
[97] Akram M Y, Ashraf T, Tong L, Yin X L, Dong H J, Lu H L. Architecting high-performance photocatalysts: A review of modified 2D/2D graphene/g-C3N4 heterostructures[J]. J. Environ. Chem. Eng., 2024, 12(5): 113415.
[98] Ma C Y, Liu P H, Wang R T, Zhao G H, Zhou N, Zhang Q Y. Synthesis and characterization of enhanced visible light-driven C-doped ZnO-2D GO/g-C3N4 heterojunction photocatalyst[J]. Diam. Relat. Mater., 2023, 139: 110364.
[99] Bao Y C, Chen K Z. Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism[J]. Appl. Surf. Sci., 2018, 437: 51-61.
[100] Wang X Y, Wang H H, Yu K, Hu X F. Immobilization of 2D/2D structured g-C3N4nanosheet/reduced graphene oxide hybrids on 3D nickel foam and its photocatalytic performance[J]. Mater. Res. Bull., 2018, 97: 306-313.
[101] Zhang M, Xu J, Zong R L, Zhu Y F. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4[J]. Appl. Catal. B: Environ., 2014, 147: 229-235.
[102] Li Y W, Li S Z, Zhao M B, Liu L Y, Zhang Z F, Ma W L. Acid-induced tubular g-C3N4 for the selective generation of singlet oxygen by energy transfer: Implications for the photocatalytic degradation of parabens in real water environments[J]. Sci. Total Environ., 2023, 896: 165316.
[103] Jia Y C, Tong X, Zhang J Z, Zhang R, Yang Y, Zhang L, Ji X. A facile synthesis of coral tubular g-C3N4 for photocatalytic degradation RhB and CO2 reduction[J]. J. Alloy Compd., 2023, 965: 171432.
[104] Wang S P, Hou M C, Fu H, Ruan Z Z, Sun T T, Zhu Y Q, Wang L W, Wang Y H, Zhang S L. Synthesis of ultrathin porous g-C3N4 nanofilm via template-free method for photocatalytic degradation of tetracycline[J]. J. Alloy Compd., 2023, 939: 168738.
[105] Singla S, Sharma S, Basu S, Shetti N P, Aminabhavi T M. Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials[J]. Int. J. Hydrogen. Energy, 2021, 46(68): 33696-36717.
[106] Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015, 44(15): 5148-5180.
[107] Vesborg P C K, Jaramillo T F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy[J]. RSC Adv., 2012, 2(21): 7933-7947.
[108] Jiang L B, Yuan X Z, Pan Y, Liang J, Zeng G M, Wu Z B, Wang H. Doping of graphitic carbon nitride for photocatalysis: A review[J]. Appl. Catal. B: Environ., 2017, 217: 388-406.
[109] Rehman Z U, Butt F K, Balayeva N O, Idrees F, Hou J H, Tariq Z, Rehman S U, Ul Haq B, Alfaify S, Ali S, Zaman S. Two dimensional graphitic carbon nitride Nanosheets as prospective material for photocatalytic degradation of nitrogen oxides[J]. Diam. Relat. Mater., 2021, 120: 108650.
[110] Niu P, Zhang L L, Liu G, Cheng H M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv. Funct. Mater., 2012, 22(22): 4763-4770.
[111] Yang B, Han J zhang Q, Liao G F, Cheng W J, Ge G X, Liu J C, Yang X D, Wang R J, Jia X. Carbon defective g-C3N4 thin-wall tubes for drastic improvement of photocatalytic H2production[J]. Carbon, 2023, 202: 348-357.
[112] Zhang Y, Cao N, Liu X M, He F T, Zheng B, Zhao C C, Wang Y Q. Enhanced electron density of the π-conjugated structure and in-plane charge transport to boost photocatalytic H2 evolution of g-C3N4[J]. Sci. China Mater., 2023, 66(6): 2274-2282.
[113] Guan P, Yin H, Han P G, Liu J Y, Yang S Q. Hydrochloric-acid-induced hydrothermally pretreated ultrathin C3N4 nanosheets for efficient photocatalytic H2 evolution[J]. J. Chem. Technol. Biot., 2023, 98(8): 1964-1974.
[114] Zhang Q Q, Bai X, Hu X Y, Fan J, Liu E Z. Efficient photocatalytic H2 evolution over 2D/2D S-scheme NiTe2/g-C3N4 heterojunction with superhydrophilic surface[J]. Appl. Surf. Sci., 2022, 579: 152224.
[115] Ismael M. Construction of novel Ru-embedded bulk g-C3N4 photocatalysts toward efficient and sustainable photocatalytic hydrogen production[J]. Diam. Relat. Mater., 2024, 144: 111024.
[116] Tahir M. Synergistic effect of TP-Ru complex with optimized Ru-NP-loaded exfoliated g-C3N4 for photocatalytic green hydrogen production[J]. Energy & Fuels, 2024, 38(15) : 14588-14603
[117] Li R T, Gao T Y, Wang Y, Chen Y, Luo W, Wu Y, Xie Y, Wang Y, Zhang Y F. Engineering of bimetallic Au-Pd alloyed particles on nitrogen defects riched g-C3N4 for efficient photocatalytic hydrogen production[J]. Int. J. Hydrogen Energy, 2024, 63: 1116-1127.
[118] Yu C F, Yang H Y, Zhao H Y, Huang X, Liu M N, Du C W, Chen R Y, Feng J L, Dong S Y, Sun J H, Jiang K. Simultaneous hydrogen production from wastewater degradation by protonated porous g-C3N4/BiVO4 Z-scheme composite photocatalyst[J]. Sep. Purif. Technol., 2024, 335: 126201.
[119] Hassan A E, Elewa A M, Hussien M S, El-Mahdy A F, Mekhemer I M, Yahia I S, Mohamed T A, Chou H H, Wen Z. Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production[J]. J. Colloid Interf. Sci., 2024, 653: 1650-1661.
[120] Qian A, Han X, Liu Q A, Fan M W, Ye L, Pu X, Chen Y, Liu J C, Sun H, Zhao J G, Ling H, Wang R J, Li J B, Jia X. Photocatalytic hydrogen production from pure water using a IEF-11/g-C3N4 S‐scheme heterojunction[J]. ChemSusChem, 2024, 17(6): e202301538.
[121] Gong Y Y, Xu Z D, Wu J, Zhong J B, Ma D M. Enhanced photocatalytic hydrogen production performance of g-C3N4 with rich carbon vacancies[J]. Appl. Surf. Sci., 2024, 657: 159790.
[122] González A, Goikolea E, Barrena J A, Mysyk R. Review on supercapacitors: Technologies and materials[J]. Renew. Sust. Energ. Rev., 2016, 58: 1189-1206.
[123] Libich J, Máca J, Vondrák J, ?ech O, Sedla?íková M. Supercapacitors: Properties and applications[J]. J. Energy Storage, 2018, 17: 224-227.
[124] Miller E E, Hua Y, Tezel F H. Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors[J]. J. Energy Storage, 2018, 20: 30-40.
[125] Muralee gopi C V V, Vinodh R, Sambasivam S, Obaidat I M, Kim H J. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications[J]. J. Energy Storage, 2020, 27: 101035.
[126] Zhang X Y, Liao H W, Liu X, Shang R G, Zhou Y, Zhou Y N. Graphitic carbon nitride nanosheets made by different methods as electrode material for supercapacitors[J]. Ionics, 2020, 26(7): 3599-607.
[127] Shen C, Li R Z, Yan L J, Shi Y X, Guo H T, Zhang J H, Lin Y, Zhang Z K, Gong Y Y, Niu L Y. Rational design of activated carbon nitride materials for symmetric supercapacitor applications[J]. Appl. Surf. Sci., 2018, 455: 841-848.
[128] Gon?alves R, Lima T M, Paix?o M W, Pereira E C. Pristine carbon nitride as active material for high-performance metal-free supercapacitors: simple, easy and cheap[J]. RSC Adv., 2018, 8(61): 35327-35336.
[129] Butt F K, Hauenstein P, Kosiahn M, Garlyyev B, Dao M, Lang A, Scieszka D, Liang Y, Kreuzpaintner W. An innovative microwave-assisted method for the synthesis of mesoporous two dimensional g-C3N4: A revisited insight into a potential electrode material for supercapacitors[J]. Micropor. Mesopor. Mat., 2020, 294: 109853.
[130] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
[131] Matter P H, Zhang L, Ozkan U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction[J]. J. Catal., 2006, 239(1): 83-96.
[132] Liu Z W, Peng F, Wang H J, Yu H, Zheng W X, Yang J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angew. Chem. Int. Ed., 2011, 50(14): 3257-3261.
[133] Tahir M, Mahmood N, Zhu J H, Mahmood A, Butt F K, Rizwan S, Aslam I, Tanveer M, Idrees F, Shakir I, Cao C B, Hou Y L. One dimensional graphitic carbon nitrides as effective metal-free oxygen reduction catalysts[J]. Sci. Rep.-UK, 2015, 5(1): 12389.
[134] Zhang C Z, Hao R, Liao H B, Hou Y L. Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction[J]. Nano Energy, 2013, 2(1): 88-97.
[135] Mahmood N, Zhang C Z, Hou Y L. Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries[J]. Small, 2013, 9(8): 1321-1328.
[136] Mahmood N, Zhang C Z, Jiang J, Liu F, Hou Y L. Multifunctional Co3S4/graphene composites for lithium ion batteries and oxygen reduction reaction[J]. Chem.-Eur. J., 2013, 19(16): 5183-5190.
[137] Li C X, Li X S, Zhang X Y, Yang X J, Wang L Y, Lü W. The g-C3N4 quantum dot decorated g-C3N4Sheet/reduced graphene oxide composite as efficient metal-free electrocatalyst for oxygen reduction reaction[J]. J. Electrochem. Soc., 2020, 167(10): 100534.
[138] Prabakaran K, Jandas P J, Luo J T, Fu C. Chapter 11 - Graphitic carbon nitride for fuel cells[M]//Editors. Pandikumar A, Murugan C, Vinoth S. Nanoscale graphitic carbon nitride-synthesis and applications, Elsevier Inc., 2022: 341-366.
[139] Zhang L, Li L B, Gao Z L, Guo L J, Li M T, Su J Z. Porous hierarchical iron/nitrogen co‐doped carbon etched by g‐C3N4 pyrolysis as efficient non‐noble metal catalysts for PEM fuel cells[J]. ChemElectroChem, 2022, 9(6): e202101681.
[140] Harun N A M, Shaari N, Ramli Z A C. Progress of g‐C3N4 and carbon‐based material composite in fuel cell application[J]. Int. J. Energy Res., 2022, 46(12): 16281-16315.
[141] Ponnusamy P, Panthalingal M K, Badhirappan G P, Pullithadathil B. Durable electrocatalyst support materials based on N-doped mesoporous carbon nanofibers with titanium nitride overlay coating for high-performance proton exchange membrane fuel cells[J]. ACS Appl. Nano Mater., 2024, 7(5): 4676-4691.
[142] Ravichandran S, Bhuvanendran N, Kumar R S, Balla P, Lee S Y, Xu Q, Su H N. Polyhedron shaped palladium nanostructures embedded on MoO2/PANI-g-C3N4 as high performance and durable electrocatalyst for oxygen reduction reaction[J]. J. Colloid. Interf. Sci., 2023, 629: 357-369.
[143] Boretti A, Banik B K. Advances in hydrogen production from natural gas reforming[J]. Adv. Energy Sust. Res., 2021, 2(11): 2100097.
[144] Peng Y D, Jiang K, Hill W, Lu Z Y, Yao H B, Wang H T. Large-scale, low-cost, and high-efficiency water-splitting system for clean H2 generation[J]. ACS Appl. Mater. & Interfaces, 2019, 11(4): 3971-3977.
[145] Bockris J O M. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment[J]. Int. J. Hydrogen Energy, 2002, 27(7): 731-740.
[146] Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z C J. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chem. Soc. Rev., 2020, 49(7): 2196-2214.
[147] Karmakar A, Karthick K, Sankar S S, Kumaravel S, Madhu R, Kundu S. A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review[J]. J. Mater. Chem. A, 2021, 9(3): 1314-1352.
[148] Anantharaj S, Ede S R, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A Review[J]. ACS Catal., 2016, 6(12): 8069-8097.
[149] Li A L, Sun Y M, Yao T T, Han H X. Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen[J]. Chem.-Eur. J., 2018, 24(69): 18334-18355.
[150] Liu B, Sun Y L, Liu L, Xu S, Yan X B. Advances in manganese-based oxides cathodic electrocatalysts for Li-air batteries[J]. Adv. Funct. Mater., 2018, 28(15): 1704973.
[151] Lv L, Yang Z X, Chen K, Wang C D, Xiong Y J. 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application[J]. Adv. Energy Mater., 2019, 9(17): 1803358.
[152] Wang H F, Chen L Y, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chem. Soc. Rev., 2020, 49(5): 1414-1448.
[153] Zhao J W, Shi Z X, Li C F, Ren Q, Li G R. Regulation of perovskite surface stability on the electrocatalysis of oxygen evolution reaction[J]. ACS Mater. Lett., 2021, 3(6): 721-737.
[154] Yun T G, Sim Y, Lim Y, Kim D, An J S, Lee H, Du Y, Chung S Y. Surface dissolution and amorphization of electrocatalysts during oxygen evolution reaction: Atomistic features and viewpoints[J]. Mater. Today, 2022, 58: 221-237.
[155] Torres-Pinto A, Díez A M, Silva C G, Faria J L, Sanromán M á, Silva A M T, Pazos M. Tuning graphitic carbon nitride (g-C3N4) electrocatalysts for efficient oxygen evolution reaction (OER)[J]. Fuel, 2024, 360: 130575.
[156] Yu Z, Li Y, Torres-Pinto A, Lagrow A P, Diaconescu V M, Simonelli L, Sampaio M J, Bondarchuk O, Amorim I, Araujo A, Silva A M T, Silva C G, Faria J L, Liu L. Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable electrocatalytic/photocatalytic hydrogen evolution[J]. Appl. Catal. B: Environ., 2022, 310: 121318.
[157] Peng Z, Yang S W, Jia D S, Da P M, He P, Al-Enizi A M, Ding G Q, Xie X M, Zheng G F. Homologous metal-free electrocatalysts grown on three-dimensional carbon networks for overall water splitting in acidic and alkaline media[J]. J. Mater. Chem. A, 2016, 4(33): 12878-12883.
[158] Yu L H, Sun S N, Li H Y, Xu Z J. Effects of catalyst mass loading on electrocatalytic activity: An example of oxygen evolution reaction[J]. Fund Res.-China, 2021, 1(4): 448-452.
[159] Ehsan M A, Babar N-U-A. Straightforward preparation of Fe-based electrocatalytic films at various substrates for IrO2-like water oxidation activity[J]. Energy & Fuels, 2023, 37(5): 3934-3941.
[160] Ma T Y, Dai S, Jaroniec M, Qiao S Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angew. Chem. Int. Ed., 2014, 53(28): 7281-7285.
[161] Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Du A J, Jaroniec M, Qiao S Z. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Commun., 2014, 5(1): 3783.
[162] Wang F F, Wang Q G, Wang S M, Zhang K, Jia S Q, Chen J, Wang X H. Water-phase lateral interconnecting quantum dots as free-floating 2D film assembled by hydrogen-bonding interactions to acquire excellent electrocatalytic activity[J]. ACS Nano, 2022, 16(6): 9049-9061.
[163] Wang S, Lv H, Tang F M, Sun Y W, Ji W X, Zhou W, Shen X J, Zhang C M. Defect engineering assisted support effect: IrO2/N defective g-C3N4 composite as highly efficient anode catalyst in PEM water electrolysis[J]. Chem. Eng. J., 2021, 419: 129455.
[164] kayi? z akyüz d. A high-performance electrocatalyst via graphitic carbon nitride nanosheet-decorated bimetallic phosphide for alkaline water electrolysis[J]. Phys. Chem. Chem. Phys., 2024, 26(20): 14908-17918.
[165] Zhao Y, Zhao F, Wang X P, Xu C Y, Zhang Z P, Shi G Q, Qu L T. Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution[J]. Angew. Chem. Int. Ed., 2014, 53(50): 13934-13939.
[166] Tian J, Ning R, Liu Q, Asiri A M, Al-Youbi A O, Sun X. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. ACS Appl. Mater. & Interfaces, 2014, 6(2): 1011-1017.
[167] Zhong H X, Zhang Q, Wang J, Zhang X B, Wei X L, Wu Z J, Li K, Meng F L, Bao D, Yan J M. Engineering ultrathin C3N4quantum dots on graphene as a metal-free water reduction electrocatalyst[J]. ACS Catal., 2018, 8(5): 3965-3970.
文章导航

/