欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

基于单细胞尺度的纳米移液管递送研究

  • 张鹤 ,
  • Md Maksudur Rahman ,
  • 陶洋 ,
  • Joseph W Sampson ,
  • 任航
展开
  • aDepartment of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
    bCenter for Electrochemistry, The University of Texas at Austin, Austin, TX 78712, USA
    cTexas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA

收稿日期: 2024-04-29

  录用日期: 2024-08-09

  网络出版日期: 2024-08-21

Precision Delivery Using Nanopipette for Single-Cell Studies

  • He Zhang ,
  • Md Maksudur Rahman ,
  • Yang Tao ,
  • Joseph W Sampson ,
  • Hang Ren
Expand
  • aDepartment of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
    bCenter for Electrochemistry, The University of Texas at Austin, Austin, TX 78712, USA
    cTexas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
* Hang Ren, Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA.,E-mail: hren@utexas.edu

Received date: 2024-04-29

  Accepted date: 2024-08-09

  Online published: 2024-08-21

摘要

基于纳米移液管的电化学扫描探针技术是一种多功能非接触成像工具,并被广泛应用于生物学研究。除了一般的表面形貌成像研究外,它在局部递送生物活性分子方面的潜力也逐渐显现。在这篇简短综述中,我们介绍了这种技术在单细胞研究中的应用,特别是局部递送。我们总结并比较了三种递送模式的工作原理,包括阻抗脉冲、压力驱动和电渗流驱动递送,还回顾了这些模式在单细胞研究中的应用。此外,本文还讨论了基于扫描离子电导显微镜的递送技术所面临的技术挑战及其在医学和药理学研究中日益增长的影响力。

本文引用格式

张鹤 , Md Maksudur Rahman , 陶洋 , Joseph W Sampson , 任航 . 基于单细胞尺度的纳米移液管递送研究[J]. 电化学, 2024 , 30(11) : 2414002 . DOI: 10.61558/2993-074X.3488

Abstract

Nanopipette based scanning probe technique is a versatile tool in non-contact imaging in biology. In addition to the topographic imaging, its capability of localized delivery of bio-active molecules is emerging. In this mini review, we introduce the applications of nanopipette in single-cell researches with a focus on localized delivery. The working principles of three delivery modes including resistive pulse, pressure-driven flow, and electroosmotic flow-driven delivery are summarized and compared. Their applications in single-cell researches are reviewed. The current technical challenges in scanning ion conductance microscopy-based delivery, and their growing influence in medicine and pharmacologic researches are also discussed.

参考文献

[1] Zhang L W, Vertes A. Single-cell mass spectrometry approaches to explore cellular heterogeneity[J]. Angew. Chem. Int. Ed., 2018, 57(17): 4466-4477.
[2] Altschuler S J, Wu L F. Cellular heterogeneity: Do differences make a difference[J] Cell, 2010, 141(4): 559-563.
[3] Huang K, Wang Y H, Zhang H, Wang T Y, Liu X H, Liu L, Jiang H, Wang X M. Application and outlook of electrochemical technology in single-cell analysis[J]. Biosens. Bioelectron., 2023, 242: 115741.
[4] Chinese society of electrochemistry. The top ten scientific questions in electrochemistry[J]. J. Electrochem., 2024, 30(1): 2024121.
[5] Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016, 116(22): 13234-13278.
[6] Ushiki T, Nakajima M, Choi M, Cho S J, Iwata F. Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy[J]. Micron, 2012, 43(12): 1390-1398.
[7] Lazenby R A, White R J. Advances and perspectives in chemical imaging in cellular environments using electrochemical methods[J]. Chemosensors, 2018, 6(2): 24.
[8] Zhu C, Huang K X, Siepser N P, Baker L A. Scanning ion conductance microscopy[J]. Chem. Rev., 2021, 121(19): 11726-11768.
[9] Kempaiah R, Vasudevamurthy G, Subramanian A. Scanning probe microscopy based characterization of battery materials, interfaces, and processes[J]. Nano Energy, 2019, 65: 103925.
[10] Page A, Perry D, Unwin P R. Multifunctional scanning ion conductance microscopy[J]. Proc. Math. Phys. Eng. Sci., 2017, 473(2200): 20160889.
[11] Mirkin M V. High resolution studies of heterogeneous processes with the scanning electrochemical microscope[J] Mikrochim. Acta, 1999, 130(3): 127-153.
[12] Kai T H, Zoski C G, Bard A J. Scanning electrochemical microscopy at the nanometer level[J]. Chem. Commun., 2018, 54(16): 1934-1947.
[13] Amemiya S, Guo J, Xiong H, Gross D A. Biological applications of scanning electrochemical microscopy: Chemical imaging of single living cells and beyond[J]. Anal. and Bioanal. Chem., 2006, 386(3): 458-471.
[14] Bergner S, Vatsyayan P, Matysik F M. Recent advances in high resolution scanning electrochemical microscopy of living cells-a review[J]. Anal. Chim. Acta., 2013, 775: 1-13.
[15] Conzuelo F, Schulte A, Schuhmann W. Biological imaging with scanning electrochemical microscopy[J]. Proc. Math. Phys. Eng. Sci., 2018, 474(2218): 20180409.
[16] Wu J N, Gao Y F, Pan N, Lu L P, Wang X Y. An isolated single-particle-based SECM tip interface for single-cell NO sensing[J]. Biosens. Bioelectron., 2023, 223: 115048.
[17] Nebel M, Grutzke S, Diab N, Schulte A, Schuhmann W. Visualization of oxygen consumption of single living cells by scanning electrochemical microscopy: The influence of the faradaic tip reaction.[J]. Angew. Chem. Int. Ed., 2013, 52(24): 6335-6338.
[18] Happel P, Thatenhorst D, Dietzel I D. Scanning ion conductance microscopy for studying biological samples[J]. Sensors, 2012, 12(11): 14983-15008.
[19] Muhammed Y, Lazenby R A. Scanning ion conductance microscopy revealed cisplatin-induced morphological changes related to apoptosis in single adenocarcinoma cells[J]. Anal. Methods, 2024, 16(4): 503-514.
[20] Hansma P K, Drake B, Marti O, Gould S A, Prater C B. The scanning ion-conductance microscope[J]. Science, 1989, 243(4891): 641-643.
[21] Korchev Y E, Milovanovic M, Bashford C L, Bennett D C, Sviderskaya E V, Vodyanoy I, Lab M J. Specialized scanning ion-conductance microscope for imaging of living cells[J]. J. Microsc.-Oxf., 1997, 188: 17-23.
[22] Song Y, Zhang S T, Cao C, Yan J, Li M, Li X Y, Chen F, Gu N. Imaging structural and electrical changes of aging cells using scanning ion conductance microscopy[J]. Small Methods, 2023, 8(8): e2301315.
[23] Gesper A, Thatenhorst D, Wiese S, Tsai T, Dietzel I D. Patrick H. Long-term, long-distance recording of a living migrating neuron by scanning ion conductance microscopy[J]. Scanning, 2015, 37(3): 226-231.
[24] Huang K X, Zhou L S, Alanis K, Hou J H, Baker L A. Imaging effects of hyperosmolality on individual tricellular junctions[J]. Chem. Sci., 2020, 11(5): 1307-1315.
[25] Tognoni E. High-speed multifunctional scanning ion conductance microscopy: Innovative strategies to study dynamic cellular processes[J]. Curr. Opin. Electrochem., 2021, 28: 100738.
[26] Navikas V, Leitao S M, Grussmayer K S, Descloux A, Drake B, Yserentant K, Werther P, Herten D P, Wombacher R, Radenovic A, Fantner G E. Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy[J]. Nat. Commun., 2021, 12(1): 4565.
[27] Sanchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Korchev Y E. Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette[J]. Biophys. J., 2008, 95(6): 3017-3027.
[28] McKelvey K, Edwards M A, White H S. Resistive pulse delivery of single nanoparticles to electrochemical interfaces[J]. J. Phys. Chem. Lett., 2016, 7(19): 3920-3924.
[29] Babakinejad B, Jonsson P, Lopez Cordoba A, Actis P, Novak P, Takahashi Y, Shevchuk A, Anand U, Anand P, Drews A, Ferrer-Montiel A, Klenerman D, Korchev Y E. Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells[J]. Anal. Chem., 2013, 85(19): 9333-9342.
[30] Lan W J, Holden D A, Liu J, White H S. Pressure-driven nanoparticle transport across glass membranes containing a conical-shaped nanopore[J]. J. Phys. Chem. C, 2011, 115(38): 18445-18452.
[31] Saha-Shah A, Weber A E, Karty J A, Ray S J, Hieftje G M, Baker L A. Nanopipettes: Probes for local sample analysis[J]. Chem. Sci., 2015, 6(6): 3334-3341.
[32] Oh K W. 6-Lab-on-chip (LOC) devices and microfluidics for biomedical applications[M]. Woodhead: Elsevler, 2012: 150-171.
[33] Delgado A V, Gonzalez-Caballero F, Hunter R J, Koopal L K, Lyklema J. Measurement and interpretation of electrokinetic phenomena[J]. Pure. Appl. Chem., 2005, 77(10): 1753-1805
[34] Bruckbauer A, James P, Zhou D, Yoon J W, Excell D, Korchev Y, Jones R, Klenerman D. Nanopipette delivery of individual molecules to cellular compartments for single-molecule fluorescence tracking[J]. Biophys. J., 2007, 93(9): 3120-3131.
[35] Seger R A, Actis P, Penfold C, Maalouf M, Vilozny B, Pourmand N. Voltage controlled nano-injection system for single-cell surgery[J]. Nanoscale, 2012, 4(19): 5843-5846.
[36] Kolmogorov V, Erofeev A, Vaneev A, Gorbacheva L, Kolesov D, Klyachko N, Korchev Y, Gorelkin P. Scanning ion-conductance microscopy for studying mechanical properties of neuronal cells during local delivery of glutamate[J]. Cells, 2023, 12(20): 2428.
[37] Page A, Kang M, Armitstead A, Perry D, Unwin P R. Quantitative visualization of molecular delivery and uptake at living cells with self-referencing scanning ion conductance microscopy-scanning electrochemical microscopy[J]. Anal. Chem., 2017, 89(5): 3021-3028.
[38] Howorka S, Siwy Z. Nanopore analytics: Sensing of single molecules[J]. Chem. Soc. Rev., 2009, 38(8): 2360-2384.
[39] Wang Y X, Cai H J, Mirkin M V. Delivery of single nanoparticles from nanopipettes under resistive-pulse control[J]. ChemElectroChem, 2014, 2(3): 343-347.
[40] Pandey P, Sesena-Rubfiaro A, Khatri S, He J. Development of multifunctional nanopipettes for controlled intracellular delivery and single-entity detection[J]. Faraday Discuss., 2022, 233(0): 315-335.
[41] Chau C C, Maffeo C M, Aksimentiev A, Radford S E, Hewitt E W, Actis P. Single molecule delivery into living cells[J]. Nat. Commun., 2024, 15(1): 4403.
[42] Liu Y, Xu C, Chen X W, Wang J H, Yu P, Mao L Q. Voltage-driven counting of phospholipid vesicles with nanopipettes by resistive-pulse principle[J]. Electrochem. Commun., 2018, 89: 38-42.
[43] Terejanszky P, Makra I, Furjes P, Gyurcsanyi R E. Calibration-less sizing and quantitation of polymeric nanoparticles and viruses with quartz nanopipets[J]. Anal. Chem., 2014, 86(10): 4688-4697.
[44] Holden D A, Watkins J J, White H S. Resistive-pulse detection of multilamellar liposomes[J]. Langmuir, 2012, 28(19): 7572-7577.
[45] Actis P, Maalouf M M, Kim H J, Lohith A, Vilozny B, Seger R A, Pourmand N. Compartmental genomics in living cells revealed by single-cell nanobiopsy[J]. ACS Nano, 2014, 8(1): 546-553.
[46] Ando T. High-speed atomic force microscopy and its future prospects[J]. Biophys. Rev., 2018, 10(2): 285-292.
文章导航

/