欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

金属氮化物作为锂硫电池阴极硫骨架材料的研究

展开
  • a. 集美大学海洋装备与机械工程学院,福建 厦门 361021
熊海基,朱成威,邓丁榕,吴启辉

网络出版日期: 2024-08-21

Metal Nitrides as Cathode hosts for Lithium-Sulfur Batteries

Expand
  • a Jimei University, College of Marine Equipment and Mechanical Engineering, Key Laboratory of Energy Cleaning Utilization, Development, Cleaning Combustion and Energy Utilization Research Center of Fujian Province, Xiamen Key Laboratory of Marine Corrosion and Smart Protective Materials, Xiamen, Fujian, 361021, China
Hai-Ji Xiong, Cheng-wei Zhu, Ding-Rong Deng, Qi-Hui Wu

Online published: 2024-08-21

摘要

由于锂硫电池高理论能量密度(2600 Wh·kg-1)和比容量(1675 mAh·g-1),被认为是集成可再生能源系统用于大规模能量存储的潜在解决方案之一。但是由于“穿梭效应”、容量衰减和体积变化等障碍阻碍了锂硫电池的成功商业化。现阶段已提出各种策略以克服技术障碍,本文综述了不同金属氮化物作为高性能锂硫电池阴极宿主材料的应用,总结了不同宿主材料的设计策略,讨论了金属氮化物性质与其电化学性能之间的关系,最后,提出了对金属氮化物设计和发展的合理建议,以及促进未来突破的想法。我们希望本文能够引起更多关于金属氮化物及其衍生物的关注,并进一步促进锂硫电池的电化学性能。

本文引用格式

熊海基, 朱成威, 邓丁榕, 吴启辉 . 金属氮化物作为锂硫电池阴极硫骨架材料的研究[J]. 电化学, 0 : 0 . DOI: 10.61558/2993-074X.3489

Abstract

Lithium-sulfur batteries are considered as one of the potential solutions as integrating renewable energy systems for large-scale energy storage because of the high theoretical energy density (2600 Wh·kg-1) and specific capacity (1675 mAh·g-1). Due to this face, various strategies have been proposed to overcome the technical barriers, e.g. “shuttle effect”, capacity decay, and volumetric change, which impede the successful commercialization of lithium-sulfur batteries. This paper reviews the applications of metal nitrides as the cathode hosts for high-performance lithium-sulfur batteries, summarizes the design strategies of different host materials, discusses the relationship between the properties of metal nitrides and their electrochemical performances. Finally, reasonable suggestions for the design and development of metal nitrides are proposed, along with ideas to promote future breakthroughs. We hope that this review could attract more attention to metal nitrides and their derivatives, and further promote the electrochemical performance of lithium-sulfur batteries.
文章导航

/