水性锌离子电池的无枝晶策略:结构、电解质和隔膜
收稿日期: 2024-05-24
修回日期: 2024-07-30
录用日期: 2024-07-30
网络出版日期: 2024-08-01
Dendrite-Free Strategies for Aqueous Zinc-Ion Batteries: Structure, Electrolyte, and Separator
Received date: 2024-05-24
Revised date: 2024-07-30
Accepted date: 2024-07-30
Online published: 2024-08-01
能源需求的持续增长和环境污染的加剧构成了亟待解决的主要挑战。开发和利用风能和太阳能等可再生、可持续的清洁能源至关重要。然而,这些间歇性能源的不稳定性使得对储能系统的需求日益迫切。水系锌离子电池(AZIBs)因其独特优势,如高能量密度、成本效益、环保性和安全性,受到广泛关注。然而,AZIBs面临着重大挑战,主要是锌枝晶的形成严重影响了电池的稳定性和寿命,导致电池失效。因此,减少锌枝晶的形成对于提高 AZIBs 的性能至关重要。本综述系统而全面地梳理了当前抑制锌枝晶形成的策略和进展。通过综合分析锌阳极、电解质、隔膜设计和改性以及其他新机制的最新发展,为研究人员提供一个透彻的理解,以指导未来的研究,推动水性锌离子电池技术的发展。
吴刚 , 杨武海 , 杨洋 , 杨慧军 . 水性锌离子电池的无枝晶策略:结构、电解质和隔膜[J]. 电化学, 2024 , 30(12) : 2415003 . DOI: 10.61558/2993-074X.3487
Continued growth in energy demand and increased environmental pollution constitute major challenges that need to be addressed urgently. The development and utilization of renewable, sustainable, and clean energy sources, such as wind and solar, are crucial. However, the instability of these intermittent energy sources makes the need for energy storage systems increasingly urgent. Aqueous zinc-ion batteries (AZIBs) have received widespread attention due to their unique advantages, such as high energy density, cost-effectiveness, environmental friendliness, and safety. However, AZIBs face significant challenges, mainly the formation of zinc dendrites that seriously affect the stability and lifetime of the batteries, leading to battery failure. Therefore, reducing the formation of zinc dendrites is crucial for improving the performance of AZIBs. This review systematically and comprehensively comprehends the current strategies and advances in inhibiting the formation of zinc dendrites. By comprehensively analyzing the latest developments in zinc anode, electrolyte, separator design and modification, as well as other novel mechanisms, it provides researchers with a thorough understanding to guide future research and advance the development of AZIBs.
[1] | Kang K, Meng Y S, Breger J, Grey C P, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980. |
[2] | Schon T B, McAllister B T, Li P F, Seferos D S. The rise of organic electrode materials for energy storage[J]. Chem. Soc. Rev., 2016, 45(22): 6345-6404. |
[3] | Cano Z P, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature energy, 2018, 3(4): 279-289. |
[4] | Blomgren G E. The development and future of lithium ion batteries[J]. J. Electrochem. Soc., 2016, 164(1): A5019. |
[5] | Lu J, Li L, Park J B, Sun Y K, Wu F, Amine K. Aprotic and aqueous Li-O2 batteries[J]. Chem. Rev., 2014, 114(11): 5611-5640. |
[6] | Wu G, Li X, Zhang Z, Dong P, Xu M L, Peng H L, Zeng X Y, Zhang Y J, Liao S J. Design of ultralong-life Li-CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes[J]. J. Mater. Chem. A, 2020, 8(7): 3763-3770. |
[7] | Deng Y P, Liang R, Jiang G, Jiang Y, Yu A, Chen Z. The current state of aqueous Zn-based rechargeable batteries[J]. ACS Phys. Rev. E Energy Lett., 2020, 5(5): 1665-1675. |
[8] | Liang Y L, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries[J]. Nature Energy, 2020, 5(9): 646-656. |
[9] | Jia X, Liu C, Neale Z G, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chem. Rev., 2020, 120(15): 7795-7866. |
[10] | Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Highly reversible zinc metal anode for aqueous batteries[J]. Nat. Mater., 2018, 17(6): 543-549. |
[11] | Yuan L, Hao J, Kao C C, Wu C, Liu H K, Dou S X, Qiao S Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries[J]. Energy Environ. Sci., 2021, 14(11): 5669-5689. |
[12] | Chao D L, Zhou W H, Xie F X, Ye C, Li H, Jaroniec M, Qiao S Z. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Sci. Adv., 2020, 6(21): eaba4098. |
[13] | Li Q, Chen A, Wang D H, Zhao Y W, Wang X Q, Jin X, Xiong B, Zhi C Y. Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries[J]. Nat. Commun., 2022, 13(1): 3699. |
[14] | Wu G, Yang Y, Zhu R J, Yang W H, Yang H J, Zhou H S. The pitfalls of using stainless steel (SS) coin cells in aqueous zinc battery research[J]. Energy Environ. Sci., 2023, 16(10): 4320-4325. |
[15] | Tang D, Zhang X Y, Han D L, Cui C J, Han Z S, Wang L, Li Z G, Zhang B, Liu Y X, Weng Z. Switching hydrophobic interface with ionic valves for reversible zinc batteries[J]. Adv. Mater., 2024, 36(23): 2406071. |
[16] | Zhou L F, Du T, Li J Y, Wang Y S, Gong H, Yang Q R, Chen H, Luo W B, Wang J Z. A strategy for anode modification for future zinc-based battery application[J]. Mater. Horizons, 2022, 9(11): 2722-2751. |
[17] | Sui B B, Sha L, Wang P F, Gong Z, Zhang Y H, Wu Y H, Zhao L N, Tang J J, Shi F N. In situ zinc citrate on the surface of Zn anode improves the performance of aqueous zinc-ion batteries[J]. J. Energy Storage, 2024, 82: 110550. |
[18] | Qiu K Y, Ma G Q, Wang Y Y, Liu M Y, Zhang M Y, Li X T, Qu X H, Yuan W T, Nie X Y, Zhang N. Highly compact zinc metal anode and wide-temperature aqueous electrolyte enabled by acetamide additives for deep cycling Zn batteries[J]. Adv. Funct. Mater., 2024, 34(18): 2313358. |
[19] | Xu D M, Chen B Q, Ren X T, Han C, Chang Z, Pan A Q, Zhou H S. Selectively etching-off the highly reactive (002) Zn facet enables highly efficient aqueous zinc-metal batteries[J]. Energy Environ. Sci., 2024, 17(2): 642-654. |
[20] | Zong Y, He H W, Wang Y Z, Wu M H, Ren X C, Bai Z C, Wang N A, Ning X, Dou S X. Functionalized separator strategies toward advanced aqueous zinc-ion batteries[J]. Adv. Energy Mater., 2023: 2300403. |
[21] | Wu G, Zhu R J, Yang W H, Yang Y, Okagaki J, Lu Z Y, Sun J M, Yang H J, Yoo E. Extension of aqueous zinc battery life using a robust and hydrophilic polymer separator[J]. Adv. Funct. Mater., 2024, 34(33): 2316619. |
[22] | Li B, Zeng Y, Zhang W S, Lu B A, Yang Q, Zhou J, He Z X. Separator designs for aqueous zinc-ion batteries[J]. Sci. Bull., 2024, 69(5): 688-703. |
[23] | Wippermann K, Schultze J, Kessel R, Penninger J. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives[J]. Corros. Sci., 1991, 32(2): 205-230. |
[24] | He P, Chen Q, Yan M Y, Xu X, Zhou L, Mai L Q, Nan C W. Building better zinc-ion batteries: A materials perspective[J]. EnergyChem, 2019, 1(3): 100022. |
[25] | Diggle J, Despic A, Bockris J M. The mechanism of the dendritic electrocrystallization of zinc[J]. J. Electrochem. Soc., 1969, 116(11): 1503. |
[26] | Despic A, Diggle J, Bockris J M. Mechanism of the formation of zinc dendrites[J]. J. Electrochem. Soc., 1968, 115(5): 507. |
[27] | Matsushita M, Sano M, Hayakawa Y, Honjo H, Sawada Y. Fractal Structures of zinc metal leaves grown by electrodeposition[J]. Phys. Rev. Lett., 1984, 53(3): 286-289. |
[28] | Cogswell D A. Quantitative phase-field modeling of dendritic electrodeposition[J]. Phys. Rev. E, 2015, 92(1): 011301. |
[29] | Yurkiv V, Foroozan T, Ramasubramanian A, Ragone M, Shahbazian-Yassar R, Mashayek F. Understanding Zn electrodeposits morphology in secondary batteries using phase-field model[J]. J. Electrochem. Soc., 2020, 167(6): 060503. |
[30] | Yufit V, Tariq F, Eastwood D S, Biton M, Wu B, Lee P D, Brandon N P. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries[J]. Joule, 2019, 3(2): 485-502. |
[31] | Yu W T, Shang W X, He Y, Zhao Z X, Ma Y Y, Tan P. Unraveling the mechanism of non-uniform zinc deposition in rechargeable zinc-based batteries with vertical orientation[J]. Chem. Eng. J., 2022, 431: 134032. |
[32] | Lu X Y, Zhao C Y, Chen A S, Guo Z K, Liu N N, Fan L S, Sun J M, Zhang N Q. Reducing Zn-ion concentration gradient by SO42--immobilized interface coating for dendrite-free Zn anode[J]. Chem. Eng. J., 2023, 451: 138772. |
[33] | Zhang Q, Luan J Y, Huang X B, Zhu L, Tang Y G, Ji X B, Wang H Y. Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode[J]. Small, 2020, 16(35): 2000929. |
[34] | Liu S L, Mao J F, Pang W K, Vongsvivut J, Zeng X H, Thomsen L, Wang Y Y, Liu J W, Li D, Guo Z P. Tuning the electrolyte solvation structure to suppress cathode dissolution, water reactivity, and Zn dendrite growth in zinc-ion batteries[J]. Adv. Funct. Mater., 2021, 31(38): 2104281. |
[35] | Yang Y, Yang H J, Zhu R J, Zhou H S. High reversibility at high current density: the zinc electrodeposition principle behind the “trick”[J]. Energy Environ. Sci., 2023, 167(): 2723-2731. |
[36] | Zhai J J, Yan J F, Wang G, Chen S F, Jin D, Zhang H, Zhao W, Zhang Z Y, Huang W G. Surface modification of manganese monoxide through chemical vapor deposition to attain high energy storage performance for aqueous zinc-ion batteries[J]. J. Colloid Interface Sci., 2021, 601: 617-625. |
[37] | Sun S C, Wen Y T, Billings A, Rajabi R, Wang B Y, Zhang K K, Huang K. Protecting Zn anodes by atomic layer deposition of ZrO2 to extend the lifetime of aqueous Zn-ion batteries[J]. Energy Adv., 2024, 3(1): 299-306. |
[38] | Zheng J, Zhao Q, Tang T, Yin J, Quilty C D, Renderos G D, Liu X, Deng Y, Wang L, Bock D C. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648. |
[39] | Kang L T, Cui M W, Jiang F Y, Gao Y F, Luo H J, Liu J J, Liang W, Zhi C Y. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Adv. Energy Mater., 2018, 8(25): 1801090. |
[40] | An Y L, Tian Y, Xiong S L, Feng J K, Qian Y T. Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries[J]. Acs Nano, 2021, 15(7): 11828-11842. |
[41] | Cao J, Zhang D D, Gu C, Zhang X Y, Okhawilai M, Wang S M, Han J T, Qin J Q, Huang Y H. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode[J]. Nano Energy, 2021, 89: 106322. |
[42] | Liu Y, Guo T, Liu Q, Xiong F Y, Huang M, An Y K, Wang J H, An Q Y, Liu C, Mai L Q. Ultrathin ZrO2 coating layer regulates Zn deposition and raises long-life performance of aqueous Zn batteries[J]. Mater. Today Energy, 2022, 28: 101056. |
[43] | Yang H J, Chang Z, Qiao Y, Deng H, Mu X W, He P, Zhou H S. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(24): 9377-9381. |
[44] | Zhao K N, Wang C X, Yu Y H, Yan M Y, Wei Q L, He P, Dong Y F, Zhang Z Y, Wang X D, Mai L Q. Ultrathin surface coating enables stabilized zinc metal anode[J]. Adv. Mater. Interfaces, 2018, 5(16): 1800848. |
[45] | Zhang Q, Luan J Y, Huang X B, Wang Q, Sun D, Tang Y G, Ji X B, Wang H Y. Revealing the role of crystal orientation of protective layers for stable zinc anode[J]. Nat. Commun., 2020, 11(1): 3961. |
[46] | Zhao R R, Yang Y, Liu G X, Zhu R J, Huang J B, Chen Z Y, Gao Z H, Chen X, Qie L. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes[J]. Adv. Funct. Mater., 2021, 31(2): 2001867. |
[47] | Guo Z K, Fan L S, Zhao C Y, Chen A S, Liu N N, Zhang Y, Zhang N Q. A dynamic and self-adapting interface coating for stable Zn-metal anodes[J]. Adv. Mater., 2022, 34(2): 2105133. |
[48] | Xie X S, Liang S Q, Gao J W, Guo S, Guo J B, Wang C, Xu G Y, Wu X W, Chen G, Zhou J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy Environ. Sci., 2020, 13(2): 503-510. |
[49] | He H B, Tong H, Song X Y, Song X P, Liu J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries[J]. J. Mater. Chem. A, 2020, 8(16): 7836-7846. |
[50] | He P, Huang J X. Chemical passivation stabilizes Zn anode[J]. Adv. Mater., 2022, 34(18): 2109872. |
[51] | Wu K, Yi J, Liu X, Sun Y, Cui J. Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode[J]. Nano-Micro Lett., 2021, 13(1): 79. |
[52] | Zou P C, Zhang R, Yao L B, Qin J Y, Kisslinger K, Zhuang H L, Xin H L L L. Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration[J]. Adv. Energy Mater., 2021, 11(31): 2100982. |
[53] | Hieu L T, So S, Kim I T, Hur J. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life[J]. Chem. Eng. J., 2021, 411: 128584. |
[54] | Wang Y Z, Guo T C, Yin J, Tian Z N, Ma Y C, Liu Z X, Zhu Y P, Alshareef H N. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers[J]. Adv. Mater., 2022, 34(4): 2106937. |
[55] | Liang P C, Yi J, Liu X Y, Wu K, Wang Z, Cui J, Liu Y Y, Wang Y G, Xia Y Y, Zhang J J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries[J]. Adv. Funct. Mater., 2020, 30(13): 1908528. |
[56] | Jiang Y Z, Wan Z, He X, Yang J R. Fine-Tuning Electrolyte Concentration and metal-organic framework surface toward actuating fast Zn2+ dehydration for aqueous Zn-ion batteries[J]. Angew. Chem. Int. Ed., 2023, 135(44): e202307274. |
[57] | Xu D M, Ren X T, Xu Y, Wang Y J, Zhang S B, Chen B Q, Chang Z, Pan A Q, Zhou H S. Highly stable aqueous zinc metal batteries enabled by an ultrathin crack-free hydrophobic layer with rigid sub-nanochannels[J]. Adv. Sci., 2023, 10(27): 2303773. |
[58] | Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W, Rolison D R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017, 356(6336): 415-418. |
[59] | Yang Z F, Zhang Q, Li W B, Xie C L, Wu T Q, Hu C, Tang Y G, Wang H Y. A Semi‐solid zinc powder-based slurry anode for advanced aqueous zinc-ion batteries[J]. Angew. Chem. Int. Ed., 2023, 62(3): e202215306. |
[60] | Zhu R J, Xiong Z T, Yang H J, Huang T H, Jeong S, Kowalski D, Kitano S, Aoki Y, Habazaki H, Zhu C Y. A low-cost and non-corrosive electropolishing strategy for long-life zinc metal anode in rechargeable aqueous battery[J]. Energy Storage Mater., 2022, 46: 223-232. |
[61] | Cai Z, Wang J D, Lu Z H, Zhan R M, Ou Y T, Wang L, Dahbi M, Alami J, Lu J, Amine K, Sun Y M. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry[J]. Angew. Chem. Int. Ed., 2022, 61(14): e202116560. |
[62] | Liang Y X, Qiu M J, Sun P, Mai W J. Comprehensive review of electrolyte modification strategies for stabilizing Zn metal anodes[J]. Adv. Funct. Mater., 2023, 33(51): 2304878. |
[63] | Yang W H, Du X F, Zhao J W, Chen Z, Li J J, Xie J, Zhang Y J, Cui Z L, Kong Q Y, Zhao Z M, Wang C G, Zhang Q C, Cui G L. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries[J]. Joule, 2020, 4(7): 1557-1574. |
[64] | Wan J D, Wang R, Liu Z X, Zhang S L, Hao J N, Mao J F, Li H B, Chao D L, Zhang L H, Zhang C F. Hydrated eutectic electrolyte induced bilayer interphase for high-performance aqueous zn-ion batteries with 100 °C wide-temperature range[J]. Adv. Mater., 2024, 36(11): 2310623. |
[65] | Yang W H, Wu G, Zhu R J, Choe Y K, Sun J M, Yang Y, Yang H J, Yoo E. Synergistic cation solvation reorganization and fluorinated interphase for high reversibility and utilization of zinc metal anode[J]. ACS nano, 2023, 17(24): 25335-25347. |
[66] | Zhuang W M, Chen Q W, Hou Z, Sun Z Z, Zhang T X, Wan J Y, Huang L M. Examining concentration-iant Zn deposition/stripping behavior in organic alcohol/sulfones-modified aqueous electrolytes[J]. Small, 2023, 19(28): 2300274. |
[67] | Li Z Z, Liao Y Q, Wang Y D, Cong J L, Ji H J, Huang Z M, Huang Y H. A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries[J]. Energy Storage Mater., 2023, 56: 174-182. |
[68] | Yang J H, Zhang Y, Li Z L, Xu X, Su X Y, Lai J W, Liu Y, Ding K, Chen L Y, Cai Y P, Zheng Q F. Three birds with one stone: Tetramethylurea as electrolyte additive for highly reversible Zn-metal anode[J]. Adv. Funct. Mater., 2022, 32(49): 2209642. |
[69] | Xu D M, Ren X T, Li H Y, Zhou Y R, Chai S M, Chen Y N, Li H, Bai L S, Chang Z, Pan A Q, Zhou H S. Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery[J]. Angew. Chem. Int. Ed., 2024, 63(21): e202402833. |
[70] | Huang J T, Zhong Y P, Fu H W, Zhao Y X, Li S L, Xie Y M, Zhang H, Lu B G, Chen L N, Liang S Q, Zhou J. Interfacial biomacromolecular engineering toward stable Ah-level aqueous zinc batteries[J]. Adv. Mater., 2024, 36(33): 2406257. |
[71] | Chen W Y, Guo S, Qin L P, Li L Y, Cao X X, Zhou J, Luo Z G, Fang G Z, Liang S Q. Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces[J]. Adv. Funct. Mater., 2022, 32(20): 2112609. |
[72] | Qin H Y, Kuang W, Hu N, Zhong X M, Huang D, Shen F, Wei Z W, Huang Y P, Xu J, He H B. Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries[J]. Adv. Funct. Mater., 2022, 32(47): 2206695. |
[73] | Meng C, He W D, Jiang L W, Huang Y, Zhang J T, Liu H, Wang J J. Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions[J]. Adv. Funct. Mater., 2022, 32(47): 2207732. |
[74] | Yao R, Qian L, Sui Y M, Zhao G Y, Guo R S, Hu S Y, Liu P, Zhu H J, Wang F C, Zhi C Y, Yang C. A versatile cation additive enabled highly reversible zinc metal anode[J]. Adv. Energy Mater., 2022, 12(2): 2102780. |
[75] | Li T C, Lim Y, Li X L, Luo S, Lin C, Fang D, Xia S, Wang Y, Yang H Y. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage[J]. Adv. Energy Mater., 2022, 12(15): 2103231. |
[76] | Hao J N, Yuan L B, Zhu Y L, Jaroniec M, Qiao S Z. Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries[J]. Adv. Mater., 2022, 34(44): 2206963. |
[77] | Wang Y, Wang T R, Bu S Y, Zhu J X, Wang Y B, Zhang R, Hong H, Zhang W J, Fan J, Zhi C Y. Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells[J]. Nat. Commun., 2023, 14(1): 1828. |
[78] | Xiao P, Wu Y, Fu J Z, Liang J N, Zhao Y H, Ma Y, Zhai T Y, Li H Q. Enabling high-rate and high-areal-capacity Zn deposition via an interfacial preferentially adsorbed molecular layer[J]. ACS Energy Lett., 2022, 8(1): 31-39. |
[79] | Li H Y, Ren Y, Zhu Y, Tian J M, Sun X Y, Sheng C C, He P, Guo S H, Zhou H S. A bio‐inspired trehalose additive for reversible zinc anodes with improved stability and kinetics[J]. Angew. Chem. Int. Ed., 2023, 135(41): e202310143. |
[80] | Yang Y, Hua H M, Lv Z H, Zhang M H, Liu C Y, Wen Z P, Xie H D, He W D, Zhao J B, Li C C. Reconstruction of electric double layer for long-life aqueous zinc metal batteries[J]. Adv. Funct. Mater., 2023, 33(10): 2212446. |
[81] | Lin Y H, Zhang M, Hu Y Z, Zhang S, Xu Z Q, Feng T T, Zhou H P, Wu M Q. Nitrogen-doped carbon coated zinc as powder-based anode with PVA-gel electrolyte enhancing cycling performance for zinc-ion batteries[J]. Chem. Eng. J., 2023, 472: 145136. |
[82] | Wang Q Y, Liu Y M, Zhang Z D, Cai P, Li H M, Zhou M, Wang W, Wang K L, Jiang K. Activating the intrinsic zincophilicity of PAM hydrogel to stabilize the metal-electrolyte dynamic interface for stable and long-life zinc metal batteries[J]. ChemSusChem, 2024: e202400479. |
[83] | Deng Y Q, Wu Y H, Wang L L, Zhang K F, Wang Y, Yan L F. Polysaccharide hydrogel electrolytes with robust interfacial contact to electrodes for quasi-solid state flexible aqueous zinc ion batteries with efficient suppressing of dendrite growth[J]. J. Colloid Interface Sci., 2023, 633: 142-154. |
[84] | Huang Y, Zhang J Y, Liu J W, Li Z X, Jin S Y, Li Z G, Zhang S D, Zhou H. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte[J]. Mater. Today Energy, 2019, 14: 100349. |
[85] | Wang F F, Zhang J P, Lu H T, Zhu H B, Chen Z H, Wang L, Yu J Y, You C H, Li W H, Song J W, Weng Z, Yang C P, Yang Q H. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte[J]. Nat. Commun., 2023, 14(1): 4211. |
[86] | Hao Y, Feng D D, Hou L, Li T Y, Jiao Y C, Wu P Y. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode[J]. Adv. Sci., 2022, 9(7): 2104832. |
[87] | He Q, Chang Z, Zhong Y, Chai S M, Fu C Y, Liang S Q, Fang G Z, Pan A Q. Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect[J]. ACS Energy Lett., 2023, 8(12): 5253-5263. |
[88] | Liu T C, Hong J, Wang J L, Xu Y, Wang Y. Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan[J]. Energy Storage Mater., 2022, 45: 1074-1083. |
[89] | Qin Y, Liu P, Zhang Q, Wang Q, Sun D, Tang Y G, Ren Y, Wang H Y. Advanced filter membrane separator for aqueous zinc-ion batteries[J]. Small, 2020, 16(39): e2003106. |
[90] | Li L B, Peng J X, Jia X F, Zhu X J, Meng B C, Yang K, Chu D W, Yang N X, Yu J. PBC@cellulose-filter paper separator design with efficient ion transport properties toward stabilized zinc-ion battery[J]. Electrochim. Acta, 2022, 430: 141129. |
[91] | Zhou W J, Chen M F, Tian Q H, Chen J Z, Xu X W, Wong C P. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries[J]. Energy Storage Mater., 2022, 44: 57-65. |
[92] | Lee B S, Cui S, Xing X, Liu H, Yue X, Petrova V, Lim H D, Chen R, Liu P. Dendrite suppression membranes for rechargeable zinc batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(45): 38928-38935. |
[93] | Wang Y, Long J, Hu J, Sun Z X, Meng L. Polyvinyl alcohol/Lyocell dual-layer paper-based separator for primary zinc-air batteries[J]. J. Power Sources, 2020, 453: 227853. |
[94] | Liu Y F, Liu S D, Xie X S, Li Z C, Wang P J, Lu B A, Liang S Q, Tang Y, Zhou J. A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry[J]. InfoMat, 2023, 5(3): e12374. |
[95] | Yang H J, Zhu R J, Yang Y, Lu Z Y, Chang Z, He P, Zhu C Y, Kitano S, Aoki Y, Habazaki H, Zhou S. Sustainable high-energy aqueous zinc-manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity[J]. Energy Environ. Sci., 2023, 16(5): 2133-2141. |
[96] | Song Y, Ruan P, Mao C, Chang Y, Wang L, Dai L, Zhou P, Lu B, Zhou J, He Z. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries[J]. Nano-Micro Lett., 2022, 14(1): 218. |
[97] | Su Y W, Liu B Z, Zhang Q H, Peng J, Wei C H, Li S, Li W P, Xue Z K, Yang X Z, Sun J Y. Printing-scalable Ti3C2Tx Mxene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes[J]. Adv. Funct. Mater., 2022, 32(32): 2204306. |
[98] | Yang Z F, Li W B, Zhang Q, Xie C L, Ji H M, Tang Y G, Li Y X, Wang H Y. A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries[J]. Mater. Today Energy, 2022, 28: 101076. |
[99] | Yang S C, Zhang Y X, Zhang Y, Deng J, Chen N X, Xie S D, Ma Y, Wang Z H. Designing anti-swelling nanocellulose separators with stable and fast ion transport channels for efficient aqueous zinc-ion batteries[J]. Adv. Funct. Mater., 2023, 33(42): 2304280. |
[100] | Sun Y Y, Yan L, Zhang Q, Wang T B, Zha Y C, Fan L, Jiang H F. Mixed cellulose ester membrane as an ion redistributor to stabilize zinc anode in aqueous zinc ion batteries[J]. J. Colloid Interface Sci., 2023, 641: 610-618. |
[101] | Yang Y, Chen T, Zhu M K, Gao G, Wang Y M, Nie Q Q, Jiang Y P, Xiong T, Lee W S V, Xue J M. Regulating dendrite-free Zn deposition by a self-assembled OH-terminated SiO2 nanosphere layer toward a Zn metal anode[J]. ACS Appl. Mater. Interfaces, 2022, 14(33): 37759-37770. |
[102] | Xu L, Meng T T, Zheng X Y, Li T Y, Brozena A H, Mao Y M, Zhang Q, Clifford B C, Rao J C, Hu L B. Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries[J]. Adv. Funct. Mater., 2023, 33(27): 2302098. |
[103] | Zhang Y, Liu Z P, Li X, Fan L S, Shuai Y, Zhang N Q. Loosening zinc ions from separator boosts stable Zn plating/striping behavior for aqueous zinc ion batteries[J]. Adv. Energy Mater., 2023, 13(42): 2302126. |
[104] | Yang X P, Wu W L, Liu Y Z, Lin Z R, Sun X Q. Chitosan modified filter paper separators with specific ion adsorption to inhibit side reactions and induce uniform Zn deposition for aqueous Zn batteries[J]. Chem. Eng. J., 2022, 450: 137902. |
[105] | Yang H J, Qiao Y, Chang Z, Deng H, Zhu X Y, Zhu R J, Xiong Z T, He P, Zhou H S. Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery[J]. Adv. Mater., 2021, 33(38): e2102415. |
[106] | Li Z G, Wu X H, Yu X Y, Zhou S Y, Qiao Y, Zhou H S, Sun S G. Long-life aqueous Zn-I2 battery enabled by a low-cost multifunctional zeolite membrane separator[J]. Nano Lett., 2022, 22(6): 2538-2546. |
[107] | Yang H, Yang Y, Yang W, Wu G, Zhu R. Correlating hydrogen evolution and zinc deposition/dissolution kinetics to the cyclability of metallic zinc electrodes[J]. Energy Environ. Sci., 2024, 5: 1975-1983. |
/
〈 |
|
〉 |