欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂

  • 陈发东 ,
  • 谢卓洋 ,
  • 李孟婷 ,
  • 陈四国 ,
  • 丁炜 ,
  • 李莉 ,
  • 李静 ,
  • 魏子栋
展开
  • 特种化学电源全国重点实验室(重庆大学),重庆大学化学化工学院,重庆 400044

收稿日期: 2024-02-20

  修回日期: 2024-03-23

  录用日期: 2024-04-06

  网络出版日期: 2024-04-23

Series Reports from Professor Wei’s Group of Chongqing University: Advancements in Electrochemical Energy Conversions (1/4): Report 1: High-Performance Oxygen Reduction Catalysts for Fuel Cells

  • Fa-Dong Chen ,
  • Zhuo-Yang Xie ,
  • Meng-Ting Li ,
  • Si-Guo Chen ,
  • Wei Ding ,
  • Li Li ,
  • Jing Li ,
  • Zi-Dong Wei
Expand
  • State Key Laboratory of Advanced Chemical Power Sources (Chongqing University), College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
#These authors contributed equally to this work.

Received date: 2024-02-20

  Revised date: 2024-03-23

  Accepted date: 2024-04-06

  Online published: 2024-04-23

摘要

燃料电池的规模化应用,尚需解决燃料电池成本高、工况下寿命短,以及核心材料电催化剂依赖进口等瓶颈和卡脖子问题。重庆大学魏子栋研究团队针对燃料电池面临的关键科学与技术问题,致力于开展提升燃料电池空气电极性能及低成本化的基础科学问题研究。本综述总结了该课题组过去三十年来围绕低铂和非贵碳基材料,提升空气电极活性与耐久性的研究进展。在铂基催化剂方面,首先阐述了Pt/C阴极催化剂的失活机制;总结了通过调节铂颗粒的纳米结构、修饰催化助剂、开发新型载体材料和精确调控三相界面微环境等,降低铂用量、提升电极性能和利用率的调控机制和制备策略。在非贵碳基催化剂方面,阐述了掺杂碳基催化剂氧还原活性的调节机制和失活机理;总结了致密活性位碳基催化剂结构调控、稳定性增强策略与绿色宏量可控制备策略。综述最后对低成本、长寿命燃料电池催化层结构优化与设计原则,以及面临的挑战进行了总结和展望。

本文引用格式

陈发东 , 谢卓洋 , 李孟婷 , 陈四国 , 丁炜 , 李莉 , 李静 , 魏子栋 . 系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂[J]. 电化学, 2024 , 30(7) : 2314007 . DOI: 10.61558/2993-074X.3459

Abstract

Two major challenges, high cost and short lifespan, have been hindering the commercialization process of low-temperature fuel cells. Professor Wei’s group has been focusing on decreasing cathode Pt loadings without losses of activity and durability, and their research advances in this area over the past three decades are briefly reviewed herein. Regarding the Pt-based catalysts and the low Pt usage, they have firstly tried to clarify the degradation mechanism of Pt/C catalysts, and then demonstrated that the activity and stability could be improved by three strategies: regulating the nanostructures of the active sites, enhancing the effects of support materials, and optimizing structures of the three-phase boundary. For Pt-free catalysts, especially carbon-based ones, several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented. Then, an in-depth understanding of the degradation mechanism for carbon-based catalysts is discussed, and followed by the corresponding stability enhancement strategies. Also, the carbon-based electrode at the micrometer-scale, faces the challenges such as low active-site density, thick catalytic layer, and the effect of hydrogen peroxide, which require rational structure design for the integral cathodic electrode. This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts.

参考文献

[1] Zheng Y, Petersen A S, Wan H, Hübner R, Zhang J, Wang J, Qi H, Ye Y, Liang C, Yang J, Cui Z, Meng Y, Zheng Z, Rossmeisl J, Liu W. Scalable and controllable synthesis of Pt-Ni bunched-nanocages aerogels as efficient electrocatalysts for oxygen reduction reaction[J]. Adv. Energy Mater., 2023, 13(20): 2204257-2204269.
[2] Zaman S, Su Y Q, Dong C L, Qi R, Huang L, Qin Y, Huang Y C, Li F M, You B, Guo W, Li Q, Ding S, Yu Xia B. Scalable molten salt synthesis of platinum alloys planted in metal-nitrogen-graphene for efficient oxygen reduction[J]. Angew. Chem. Int. Ed., 2022, 61(6): e202115835.
[3] Xiao F, Wang Q, Xu G L, Qin X, Hwang I, Sun C J, Liu M, Hua W, Wu H W, Zhu S, Li J C, Wang J G, Zhu Y M, Wu D J, Wei Z D, Gu M, Amine K, Shao M H. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells[J]. Nat. Catal., 2022, 5(6): 503-512.
[4] Song T W, Xu C, Sheng Z T, Yan H K, Tong L, Liu J, Zeng W J, Zuo L J, Yin P, Zuo M, Chu S Q, Chen P, Liang H W. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts[J]. Nat. Commun., 2022, 13(1): 6521-6531.
[5] Liu J Y, Liu S Y, Yan F Z, Wen Z S, Chen W W, Liu X F, Liu Q T, Shang J X, Yu R H, Su D, Shui J L. Ultrathin nanotube structure for mass-efficient and durable oxygen reduction reaction catalysts in PEM fuel cells[J]. J. Am. Chem. Soc., 2022, 144(41): 19106-19114.
[6] Hu Y M, Zhu M Z, Luo X, Wu G, Chao T T, Qu Y T, Zhou F Y, Sun R B, Han X, Li H, Jiang B, Wu Y, Hong X. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells[J]. Angew. Chem. Int. Ed., 2021, 60(12): 6533-6538.
[7] Fan J T, Chen M, Zhao Z L, Zhang Z, Ye S Y, Xu S Y, Wang H J, L H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells[J]. Nat. Energy, 2021, 6(5): 475-486.
[8] Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low platinum proton-exchange membrane fuel cells[J]. J. Phys. Chem. Lett., 2016, 7(7): 1127-1137.
[9] Sievers G W, Jensen A W, Quinson J, Zana A, Bizzotto F, Oezaslan M, Dworzak A, Kirkensgaard J J K, Smitshuysen T E L, Kadkhodazadeh S, Juelsholt M, Jensen K M ?, Anklam K, Wan H, Sch?fer J, ?épe K, Escudero-Escribano M, Rossmeisl J, Quade A, Brüser V, Arenz M. Self-supported Pt-CoO networks combining high specific activity with high surface area for oxygen reduction[J]. Nat. Mater., 2021, 20(2): 208-213.
[10] Li L, Hu L P, Li J, Wei Z D. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells[J]. Nano Res., 2015, 8(2): 418-440.
[11] Zhang Y L, Chen S G, Wang Y, Ding W, Wu R, Li L, Qi X Q, Wei Z D. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test[J]. J. Power Sources, 2015, 273(1): 62-69.
[12] Wei Z D, Yin F, Li L L, Wei X W, Liu X A. Study of Pt/C and Pt-Fe/C catalysts for oxygen reduction in the light of quantum chemistry[J]. J. Electro. Chem., 2003, 541(1): 185-191.
[13] Wang Q M, Chen S G, Shi F, Chen K, Nie Y, Wang Y, Wu R, Li J, Zhang Y, Ding W, Li Y, Li L, Wei Z D. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale Kirkendall effect[J]. Adv. Mater., 2016, 28(48): 10673-10678.
[14] Wang Q M, Tang H, Wang M, Guo L, Chen S, Wei Z D. Precisely tuning the electronic structure of a structurally ordered PtCoFe alloy via a dual-component promoter strategy for oxygen reduction[J]. ChemComm., 2021, 57(33): 4047-4050.
[15] Gao X Y, Chen S G, Deng J H, Ibraheem S, Li J, Zhou Q Y, Lan H Y, Zou X, Wei Z D. High temperature self-assembly one-step synthesis of a structurally ordered PtFe catalyst for the oxygen reduction reaction[J]. ChemComm., 2019, 55(80): 12028-12031.
[16] Zou X, Chen S G, Wang Q M, Gao X Y, Li J, Li J, Li L, Ding W, Wei Z D. Leaching- and sintering-resistant hollow or structurally ordered intermetallic PtFe alloy catalysts for oxygen reduction reactions[J]. Nanoscale, 2019, 11(42): 20115-20122.
[17] Wang M J, Liu Y D, Li Y, Chen S G, Wei Z D. Stabilizing Fe in intermetallic L10-PtAuFe nanoparticles with strong Au-Fe bond to boost oxygen reduction reaction activity and durability[J]. Chem. Eng. J., 2023, 465(6): 142748.
[18] Wei Z D, Guo H T, Tang Z Y. Reduction of oxygen on a supported Pt-Fe-Co alloy catalyst with high surface area[J]. Chinese J. Catal., 1995, 16 (2): 141-144.
[19] Wei Z D, Chan S H, Li L L, Cai H F, Xia Z T, Sun C X. Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction[J]. Electrochim. Acta, 2005, 50(11): 2279-2287.
[20] Wei Z D, Chan S H. Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation[J]. J. Electroanal. Chem., 2004, 569(1): 23-33.
[21] Wei Z D, Li L L, Luo Y H, Yan C, Sun C X, Yin G Z, Shen P K. Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes[J]. J. Phys. Chem. B, 2006, 110(51): 26055-26061.
[22] Wei Z D, Chen S G, Liu Y, Sun C X, Shao Z G, Shen P K. Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC[J]. J. Phys. Chem. C, 2007, 111(42): 15456-15463.
[23] Liu Y, Wei Z D, Chen S G, Feng Y C, Yin G Z, Sun C X. PEMFC electrodes platinized by modulated pulse current Electrodeposition[J]. Acta Phys. -Chim. Sin., 2007, 23(4): 521-525.
[24] Chen S G, Wei Z D, Guo L, Ding W, Dong L C, Shen P K, Qi X Q, Li L. Enhanced dispersion and durability of Pt nanoparticles on a thiolated CNT support[J]. Chem. Commun., 2011, 47(39): 10984-10986.
[25] Feng X, Yang N, Zhang W J, Hong W, Tan L Q, Wang F Z, Sun D, Ding W, Li J, Li L, Wei Z D. A sequential hydrogen-adsorption-assisted bond-weakening strategy for preparing sub-2-nm ordered Pt alloy nanocrystals[J]. Matter, 2022, 5(9): 2946-2959.
[26] Zhang W J, Feng X, Mao Z X, Li J, Wei Z D. Stably immobilizing sub-3 nm high-entropy Pt alloy nanocrystals in porous carbon as durable oxygen reduction electrocatalyst[J]. Adv. Funct. Mater., 2022, 32(44): 2204110-2204117.
[27] Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chem, 2011, 3(8): 634-641.
[28] Sun M Z, Huang B L. Direct machine learning predictions of C3 pathways[J]. Adv. Energy Mater., 2023, 2400152. DOI:10.1002/aenm.202400152
[29] Wang F Z, Yang J, Li J, Han Y Y, Li A, Xu R, Feng X, Wang T, Tong C, Li J W, Wei Z D. Which is best for ORR: Single atoms, nanoclusters, or coexistence?[J]. ACS Energy Lett., 2023, 9: 93-101.
[30] Xiao F, Wang Q, Xu L G, Qin X P, Hwang I H, Sun J C, Liu M, Hua W, Wu H W, Zhu S Q, Li J C, Wang J G, Zhun Y M, Wu D J, Wei Z D, Gu M, Amine K, Shao M H. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells[J]. Nat. Catal., 2022, 5: 503-512.
[31] Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. J. Am. Chem. Soc., 2012, 134(32): 13252-13255.
[32] Wei Z D, Xue Y, Chen S, Li L, Xia M R. Density functional theory study of electronic structure and catalytic activity for Pt/C catalyst covered by polyaniline[J]. Sci. Sin. Chim., 2013, 43(11): 1566-1571.
[33] Li L, Chen S G, Wei Z D, Qi X Q, Xia M R, Wang Y Q. Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts[J]. Phys. Chem. Chem. Phys., 2012, 14(48): 16581-16587.
[34] Li J, Zhou Q Y, Yue M F, Chen S G, Deng J H, Ping X Y, Li Y, Li J, Liao Q, Shao M H, Wei Z D. Cross-linked multi-atom Pt catalyst for highly efficient oxygen reduction catalysis[J]. Appl. Catal. B, 2021, 284(5): 119728.
[35] Xie X H, Chen S G, Ding W, Nie Y, Wei Z D. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction[J]. ChemComm, 2013, 49(86): 10112-10114.
[36] Xie X H, Xue Y, Li L, Chen S G, Nie Y, Ding W, Wei Z D. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale, 2014, 6(19): 11035-11040.
[37] Chen S G, Wei Z D, Li H, Li L. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition[J]. Chem. Commun., 2010, 46(46): 8782-8784.
[38] Wang J, Wu G P, Wang W L, Xuan W H, Jiang J X, Wang J C, Li L, Lin W F, Ding W, Wei Z D. A neural-network-like catalyst structure for the oxygen reduction reaction: carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies[J]. J. Mater. Chem. A., 2019, 7(34): 19786-19792.
[39] Ji M B, Wei Z D. A review of water management in polymer electrolyte membrane fuel cells[J]. Energies, 2009, 2(4): 1057-1106.
[40] Ji M B, Wei Z D, Chen S G, Li L. A novel antiflooding electrode for proton exchange membrane fuel cells[J]. J. Phys. Chem. C, 2009, 113(2): 765-771.
[41] Ji M B, Wei Z D, Chen S G, Qi X Q, Li L, Zhang Q, Liao C, Tang R. A novel anode for preventing liquid sealing effect in DMF[J]. Int. J. Hydrogen Energy, 2009, 34(6): 2765-2770.
[42] Wang M J, Zhao T, Luo W, Mao Z X, Chen S, Ding W, Deng Y, Li W, Li J, Wei Z D. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts[J]. AlChE J., 2018, 64(7): 2881-2889.
[43] Chen F D, Chen S G, Wang A X, Wang M, Guo L, Wei Z D. Blocking the sulfonate group in Nafion to unlock platinum’s activity in membrane electrode assemblies[J]. Nat. Catal., 2023, 6(5): 392-401.
[44] Xia M R, Liu Y, Li L, Xiong K, Qi X Q, Yang L J, Hu B S, Xue Y, Wei Z D. A DFT study on PtMo resistance to SO2 poisoning[J]. Sci. China Chem., 2013, 56(7): 1004-1008.
[45] Long D J, Ping X Y, Ni J T, Chen F D, Chen S G, Wei Z D, Guo L, Zheng J Y. Strengthening Pt/WOx interfacial interactions to increase the CO tolerance of Pt for hydrogen oxidation reaction[J]. Chem. Commun., 2023, 59(91): 13583-13586.
[46] Zhang L, Li L, Chen H M, Wei Z D. Recent progress in precious metal-free carbon-based materials towards the oxygen reduction reaction: Activity, stability, and anti-poisoning[J]. Chem. Eur. J., 2020, 26(18): 3973-3990.
[47] Nie Y, Wei Z D. Electronic and physical property manipulations: Recent achievements towards heterogeneous carbon-based catalysts for oxygen reduction reaction[J]. ChemCatChem, 2019, 11(24): 5885-5897.
[48] Zhang W J, Li J, Wei Z D. Carbon-based catalysts of the oxygen reduction reaction: Mechanistic understanding and porous structures[J]. Chinese J. Catal., 2023, 48: 15-31.
[49] Wang Y, Huang X, Wei Z D. Recent developments in the use of single-atom catalysts for water splitting[J]. Chinese J. Catal., 2021, 42(8): 1269-1286.
[50] Peng L S, Wei Z D. Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion[J]. Particuology 2020, 48: 19-33.
[51] Li J C, Wei Z, Liu D, Du D, Lin Y, Shao M. Dispersive single-atom metals anchored on functionalized nanocarbons for electrochemical reactions[J]. Electrocatalysis, 2020: 127-148.
[52] Xiao L, Yang Q Q, Wang M J, Mao Z X, Li J, Wei Z D. N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction[J]. J. Mater. Sci., 2018, 53(21): 15246-15256.
[53] Wu R, Song Y J, Huang X, Chen S G, Ibraheem S, Deng J H, Li J, Qi X Q, Wei Z D. High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells[J]. J. Power Sources, 2018, 401: 287-295.
[54] Wang Y, Li J, Wei Z D. Recent progress of carbon-based materials in oxygen reduction reaction catalysis[J]. ChemElectroChem, 2018, 5(14): 1764-1774.
[55] Wang Y, Chen W, Chen Y, Wei B, Chen L H, Peng L S, Xiang R, Li J, Wang Z C, Wei Z D. Carbon-based catalysts by structural manipulation with iron for oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6 (18): 8405-8412.
[56] Wang J, Li L, Wei Z D. Density functional theory study of oxygen reduction reaction on different types of N-doped graphene[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 321-328.
[57] Wang J, Wei Z D. Recent progress in non-precious metal catalysts for oxygen reduction reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.
[58] Ding W, Wei Z D, Chen S G, Qi X, Q Yang T, Hu J, Wang D, Wan L J, Alvi S F, Li L. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angew. Chem. Int. Ed., 2013, 52(45): 11755-11759.
[59] Ding W, Li L, Xiong K, Wang Y, Li W, Nie Y, Chen S G, Qi X Q, Wei Z D. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction[J]. J. Am. Chem. Soc., 2015, 137(16): 5414-5420.
[60] Wang L, Sofer Z, Pumera M. Will any crap we put into graphene increase its electrocatalytic effect?[J]. ACS Nano, 2020, 14(1): 21-25.
[61] Yang N, Li L, Li J, Ding W, Wei Z D. Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts via the triple effect: charge, spin density and ligand effect[J]. Chem. Sci., 2018, 9 (26): 5795-5804.
[62] Jiang S K, Zhang Z Y, Yang N, Li L, Wei Z D. Probing the interaction between nitrogen dopants and edge structures of doped graphene catalysts for the highly efficient oxygen reduction reaction[J]. J. Phys. Chem. C, 2022, 126(45): 19113-19121.
[63] Li R, Wei Z D, Gou X L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution[J]. ACS Catal., 2015, 5(7): 4133-4142.
[64] Li R, Wei Z D, Gou X L, Xu W. Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts[J]. RSC Adv., 2013, 3(25): 9978-9984.
[65] Shah S S A, Najam T, Yang J, Javed M S, Peng L S, Wei Z D. Modulating the microenvironment structure of single zn atom: ZnN4P/C active site for boosted oxygen reduction reaction[J]. Chinese J. Catal., 2022, 43(8): 2193-2201.
[66] Najam T, Shah S S A, Ding W, Jiang J, Jia L, Yao W, Li L, Wei Z D. An efficient anti-poisoning catalyst against SOx, NOx, and POx: P, N-doped carbon for oxygen reduction in acidic media[J]. Angew. Chem. Int. Ed., 2018, 130(46): 15321-15326.
[67] Yang N, Peng L L, Li L, Li J, Wei Z D. Theoretical research on the oxidation mechanism of doped carbon based catalysts for oxygen reduction reaction[J]. Phys. Chem. Chem. Phys., 2019, 21(47): 26102-26110.
[68] Yang N, Peng L L, Li L, Li J, Liao Q, Shao M H, Wei Z D. Theoretically probing the possible degradation mechanisms of an fenc catalyst during the oxygen reduction reaction[J]. Chem. Sci., 2021, 12(37): 12476-12484.
[69] Li J, Chen S G, Yang N, Deng M M, Ibraheem S, Deng J H, Li J, Li L, Wei Z D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media[J]. Angew. Chem. Int. Ed., 2019, 131(21): 7109-7113.
[70] Xiao F, Wang Y, Xu G L, Yang F, Zhu S, Sun C J, Cui Y, Xu Z, Zhao Q, Jang J. Fe-N-C boosts the stability of supported platinum nanoparticles for fuel cells[J]. J. Am. Chem. Soc., 2022, 144(44): 20372-20384.
[71] Xiao F, Liu X, Sun C J, Hwang I, Wang Q, Xu Z, Wang Y, Zhu S, Wu H W, Wei Z D. Solid-state synthesis of highly dispersed nitrogen-coordinated single iron atom electrocatalysts for proton exchange membrane fuel cells[J]. Nano Lett., 2021, 21(8): 3633-3639.
[72] He Q, Zeng L P, Wang J, Jiang J X, Zhang L, Wang J C, Ding W, Wei Z D. Polymer-coating-induced synthesis of FeNx enriched carbon nanotubes as cathode that exceeds 1.0 W cm-2 peak power in both proton and anion exchange membrane fuel cells[J]. J. Power Sources, 2021, 489: 229499.
[73] Zhang Y D, Li J, Yang W, Zhang J, Fu Q, Song Y C, Wei Z D, Liao Q, Zhu X. Fe-N-doped carbon nanoparticles from coal tar soot and its novel application as a high performance air-cathode catalyst for microbial fuel cells[J]. Electrochim. Acta, 2020, 363: 137177.
[74] Mao Z X, Wang M J, Liu L, Peng L, Chen S G, Li L, Li J, Wei Z D. ZnCl2 salt facilitated preparation of FeNC: Enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction[J]. Chinese J. Catal., 2020, 41(5): 799-806.
[75] Xi J Y, Meng K, Li Y, Wang M, Liao Q, Wei Z D, Shao M H, Wang J C. Performance improvement of ultra-low pt proton exchange membrane fuel cell by catalyst layer structure optimization[J]. Chin. J. Chem. Eng., 2022, 41: 473-479.
[76] Zhou Q Q, Li J, Yue M F, Wang M, Guo L, Li Y, Chen S G, Wei Z D. Maximizing metal utilization by coupling cross-linked ptru multi-atom on an atomically dispersed znfenc support[J]. Dalton Trans, 2021, 50(30): 10354-10358.
[77] Liu L H, Liu S, Li L, Qi H F, Yang H B, Huang Y Q, Wei Z D, Li L, Xu J M, Liu B. A general method to construct single-atom catalysts supported on N-doped graphene for energy applications[J]. J. Mater. Chem. A, 2020, 8(13): 6190-6195.
[78] Fan Z Y, Li J, Yang W, Fu Q, Sun K, Song Y C, Wei Z D, Liao Q, Zhu X. Green and facile synthesis of iron oxide nanoparticle-embedded N-doped biocarbon as an efficient oxygen reduction electrocatalyst for microbial fuel cells[J]. Chem. Eng. J., 2020, 385: 123393.
[79] Wu R, Wan X J, Deng J H, Huang X, Chen S G, Ding W, Li L, Liao Q, Wei Z D. NaCl protected synthesis of 3D hierarchical metal-free porous nitrogen-doped carbon catalysts for the oxygen reduction reaction in acidic electrolyte[J]. ChemComm, 2019, 55(61): 9023-9026.
[80] He Q, Chen X H, Jia F Q, Ding W, Zhou Y Y, Wang J, Song X Y, Jiang J X, Liao Q, Li J. The role of polyaniline molecular structure in producing high-performance Fe-N-C catalysts for oxygen reduction reaction[J]. ChemistrySelect, 2019, 4(27): 8135-8141.
[81] Shah S S A, Najam T, Cheng C, Peng L S, Xiang R, Zhang L, Deng J H, Ding W, Wei Z D. Exploring Fe-Nx for peroxide reduction: Template-free synthesis of Fe-Nx traumatized mesoporous carbon nanotubes as an orr catalyst in acidic and alkaline solutions[J]. Chem. Eur. J., 2018, 24(42): 10630-10635.
[82] Li J, Chen S G, Li W, Wu R, Ibraheem S, Li J, Ding W, Li L, Wei Z D. A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6(32): 15504-15509.
[83] Li P B, Qi X Q, Zhao L, Wang J J, Wang M, Shao M H, Chen J S, Wu R, Wei Z D. Hierarchical 3D porous carbon with facilely accessible Fe-N4 single-atom sites for Zn-air batteries[J]. J. Mater. Chem. A, 2022, 10(11): 5925-5929.
[84] Li J C, Cheng M, Li T, Ma L, Ruan X, Liu D, Cheng H M, Liu C, Du D, Wei Z D. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions[J]. J. Mater. Chem. A, 2019, 7(24): 14478-14482.
[85] Wang Y, Chen W, Nie Y, Peng L S, Ding W, Chen S G, Li L, Wei Z D. Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity[J]. ChemComm, 2017, 53(83): 11426-11429.
[86] Wu R, Wang J, Chen K, Chen S G, Li J, Wang Q, Nie Y, Song Y, Chen H, Wei Z D. Space-confined pyrolysis for the fabrication of fe/n/c nanoparticles as a high performance oxygen reduction reaction electrocatalyst[J]. Electrochim. Acta, 2017, 244: 47-53.
[87] Nie Y, Xie X H, Chen S G, Ding W, Qi X Q, Wang Y, Wang J, Li W, Wei Z D, Shao M H. Towards effective utilization of nitrogen-containing active sites: Nitrogen-doped carbon layers wrapped CNTs electrocatalysts for superior oxygen reduction[J]. Electrochim. Acta, 2016, 187: 153-160.
[88] Najam T, Shah S S A, Ding W, Ling Z, Li L, Wei Z D. Electron penetration from metal core to metal species attached skin in nitrogen-doped core-shell catalyst for enhancing oxygen evolution reaction[J]. Electrochim. Acta, 2019, 327: 134939.
[89] Wang Q M, Chen S G, Lan H Y, Li P, Ping X Y, Ibraheem S, Long D, Duan Y, Wei Z D. Thermally driven interfacial diffusion synthesis of nitrogen-doped carbon confined trimetallic Pt3CoRu composites for the methanol oxidation reaction[J]. J. Mater. Chem. A, 2019, 7(30): 18143-18149.
[90] Ji D, Wang Y, Chen S G, Zhang Y L, Li L, Ding W, Wei Z D. Nitrogen-doped graphene wrapped around silver nanowires for enhanced catalysis in oxygen reduction reaction[J]. J Solid State Electrochem, 2018, 22(7): 2287-2296.
[91] Wu G P, Wang J, Ding W, Nie Y, Li L, Qi X Q, Chen S G, Wei Z D. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal[J]. Angew. Chem. Int. Ed., 2016, 55(4): 1340-1344.
文章导航

/