欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

基于山梨醇添加剂电解质的可逆锌电化学

  • 孙琼 ,
  • 杜海会 ,
  • 孙田将 ,
  • 李典涛 ,
  • 程敏 ,
  • 梁静 ,
  • 李海霞 ,
  • 陶占良
展开
  • a南开大学先进能源材料化学教育部重点实验室,天津 300071
    b中国石油和化工行业太阳能电池电极材料重点实验室,苏州科技大学化学与生命科学学院,江苏苏州 215009

收稿日期: 2023-11-29

  修回日期: 2024-02-18

  录用日期: 2024-02-23

  网络出版日期: 2024-02-28

Sorbitol-Electrolyte-Additive Based Reversible Zinc Electrochemistry

  • Qiong Sun ,
  • Hai-Hui Du ,
  • Tian-Jiang Sun ,
  • Dian-Tao Li ,
  • Min Cheng ,
  • Jing Liang ,
  • Hai-Xia Li ,
  • Zhan-Liang Tao
Expand
  • aKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
    bKey Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China

Received date: 2023-11-29

  Revised date: 2024-02-18

  Accepted date: 2024-02-23

  Online published: 2024-02-28

摘要

在水系锌离子电池中,锌枝晶、析氢,以及不稳定的锌界面使其表现出低的库仑效率和较差的循环性能。本文选用富含羟基的山梨醇作为电解质添加剂,用于重塑锌的溶剂化结构和调整锌阳极界面化学,有效抑制了水的分解以及锌枝晶的产生。一方面山梨醇与水分子强相互作用可以形成氢键网络,改变Zn2+离子与水分子之间的溶剂化壳层,减少结合水的比例,降低游离水活性;另一方面山梨醇和Zn阳极界面之间的吸附调节了Zn阳极表面结构,减少其与水分子的接触,获得热力学稳定、高度可逆的Zn电化学沉积/溶解。结果表明,含有山梨醇添加剂的Zn/Zn对称电池在1 mA·cm-2和1 mAh·cm-2的条件下实现了长达2000小时的循环寿命,在5 mA·cm-2和5 mAh·cm-2条件下也能超过250小时的循环寿命。添加山梨醇的Zn/Cu不对称电池获得了99.6%的库仑效率,比纯2 mol·L-1 ZnSO4电解质具有更高性能。Zn/PNDA全电池可在1 A·g-1电流密度下稳定放电超过2300次,并且保持了较好的电池容量。本论文通过向传统电解质中添加安全无毒的山梨醇,提升了对锌阳极界面的保护作用以及循环性能,改善了锌的可逆沉积/溶解电化学性能,为高性能水系锌离子电池的探索提供了新思路。

本文引用格式

孙琼 , 杜海会 , 孙田将 , 李典涛 , 程敏 , 梁静 , 李海霞 , 陶占良 . 基于山梨醇添加剂电解质的可逆锌电化学[J]. 电化学, 2024 , 30(7) : 2314002 . DOI: 10.61558/2993-074X.3447

Abstract

The unstable zinc (Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries. Herein, the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry. The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity, optimize the solvation shell of water and Zn2+ ions, and regulate the formation of local water (H2O)-poor environment on the surface of Zn electrode, which effectively inhibit the decomposition of water molecules, and thus, achieve the thermodynamically stable and highly reversible Zn electrochemistry. As a result, the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm-2 and 1 mAh·cm-2, and over 250 h at 5 mA·cm-2 and 5 mAh·cm-2. Moreover, the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%, obtaining a better performance than that with a pure 2 mol·L-1 ZnSO4 electrolyte. And the constructed Zn/poly1, 5-naphthalenediamine (PNDA) batteries could be stably discharged for 2300 cycles at 1 A·g-1 with an excellent capacity retention rate. This result indicates that the addition of 1 mol·L-1 non-toxic sorbitol into a conventional ZnSO4 electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition, which greatly promotes its cycle performance, providing a new approach in future development of high performance aqueous Zn ion batteries.

参考文献

[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[2] Liang J, Li X, Zhao Y, Goncharova L V, Wang G, Adair K R, Wang C, Li R, Zhu Y, Qian Y, Zhang L, Yang R, Lu S, Sun X. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes[J]. Adv. Mater., 2018, 30(45): 1804684.
[3] Chang N N, Li T Y, Li R, Wang S N, Yin Y B, Zhang H M, Li X F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy Environ. Sci., 2020, 13(10): 3527-3535.
[4] Wang Y G, Yi J, Xia Y Y. Recent progress in aqueous lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(7): 830-840.
[5] Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chem. Rev., 2020, 120(15): 7795-7866.
[6] Cai Z, Wang J, Sun Y. Anode corrosion in aqueous Zn metal batteries[J]. eScience, 2023, 3(1): 100093.
[7] Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura J A, Xu K, Wang C. Highly reversible zinc metal anode for aqueous batteries[J]. Nat. Mater., 2018, 17(6): 543-549.
[8] Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.
[9] Sun P, Ma L, Zhou W H, Qiu M J, Wang Z L, Chao D L, Mai W J. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive[J]. Angew. Chem. Int. Ed., 2021, 60(33): 18247-18255.
[10] Cao J, Zhang D D, Zhang X Y, Zeng Z Y, Qin J Q, Huang Y H. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries[J]. Energy Environ. Sci., 2022, 15(2): 499-528.
[11] Ma G Q, Miao L C, Dong Y, Yuan W T, Nie X Y, Di S L, Wang Y Y, Wang L B, Zhang N. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries[J]. Energy Storage Mater., 2022, 47: 203-210.
[12] Ye Z, Cao Z, Chee M O L, Dong P, Ajayan P M, Shen J, Ye M. Advances in Zn-ion batteries via regulating liquid electrolyte[J]. Energy Storage Mater., 2020, 32: 290-305.
[13] Cao L S, Li D, Hu E Y, Xu J J, Deng T, Ma L, Wang Y, Yang X, Q, Wang C S. Solvation structure design for aqueous Zn metal batteries[J]. J. Am. Chem. Soc., 2020, 142(51): 21404-21409.
[14] Shi J Q, Sun T J, Bao J Q, Zheng S B, Du H H, Li L, Yuan X M, Ma T, Tao Z L. "Water-in-deep eutectic solvent" electrolytes for high-performance aqueous Zn-ion batteries[J]. Adv. Funct. Mater., 2021, 31(23): 2102035.
[15] Zhang Q, Ma Y L, Lu Y, Li L, Wan F, Zhang K, Chen J. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries[J]. Nat. Commun., 2020, 11(1): 4463.
[16] Li T C, Lin C, Luo M, Wang P, Li D S, Li S, Zhou J, Yang H Y. Interfacial molecule engineering for reversible Zn electrochemistry[J]. ACS Energy Lett., 2023, 8(8): 3258-3268.
[17] Li D, Cao L S, Deng T, Liu S F, Wang C S. Design of a solid electrolyte interphase for aqueous Zn batteries[J]. Angew. Chem. Int. Ed., 2021, 60(23): 13035-13041.
[18] Qiu M J, Ma L, Sun P, Wang Z L, Cui G F, Mai W J. Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode[J]. Nano-Micro Lett., 2022, 14: 31.
[19] Yu L, Huang J, Wang S J, Qi L H, Wang S S, Chen C J. Ionic liquid "water pocket" for stable and environment-adaptable aqueous zinc metal batteries[J]. Adv. Mater., 2023, 35(21): 2210789.
[20] Malde A K, Zuo L, Breeze M, Stroet M, Poger D, Nair P C, Oostenbrink C, Mark A E. An automated force field topology builder (atb) and repository: version 1.0[J]. J. Chem. Theory Comput., 2011, 7(12): 4026-4037.
[21] Hess B. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Abstr. Papers Am. Chem. Soc., 2009, 237: 435-447.
[22] Lomas J S, Joubert L, Maurel F. Association of symmetrical alkane diols with pyridine: DFT/GIAO calculation of 1H NMR chemical shifts[J]. Magn. Reson. Chem., 2016, 54(10): 805-814.
[23] Sun T J, Nian Q S, Ren X D, Tao Z L. Hydrogen-bond chemistry in rechargeable batteries[J]. Joule, 2023, 7(12): 2700-2731.
[24] Wei J, Zhang P B, Shen T Y, Liu Y Z, Dai T F, Tie Z X, Jin Z. Supramolecule-based excluded-volume electrolytes and conjugated sulfonamide cathodes for high-voltage and long-cycling aqueous zinc-ion batteries[J]. ACS Energy Lett., 2023, 8(1): 762-771.
[25] Lu H T, Zhang X L, Luo M H, Cao K S, Lu Y H, Xu B B, Pan H G, Tao K, Jiang Y Z. Amino acid-induced interface charge engineering enables highly reversible Zn anode[J]. Adv. Funct. Mater., 2021, 31(45): 2103514.
[26] Liu M Y, Yuan W T, Ma G Q, Qiu K Y, Nie X Y, Liu Y C, Shen S G, Zhang N. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angew. Chem. Int. Ed., 2023, 62(27): e202304444.
[27] Chen W Y, Guo S, Qin L P, Li L Y, Cao X X, Zhou J, Luo Z G, Fang G Z, Liang S Q. Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces[J]. Adv. Funct. Mater., 2022, 32(20): 2112609.
[28] Zhao Z M, Zhao J W, Hu Z L, Li J D, Li J J, Zhang Y J, Wang C, Cui G L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy Environ. Sci., 2019, 12(6): 1938-1949.
[29] Miao L C, Wang R H, Di S L, Qian Z F, Zhang L, Xin W L, Liu M Y, Zhu Z Q, Chu S Q, Du Y, Zhang N. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes[J]. ACS Nano., 2022, 16 (6): 9667-9678.
[30] Li C C, Hu L, Ren X Y, Lin L, Zhan C Z, Weng Q S, Sun X Q, Yu X L. Asymmetric charge distribution of active centers in small molecule quinone cathode boosts high-energy and high-rate aqueous zinc-organic batteries[J]. Adv. Funct. Mater., 2024, 34(16): 2313241.
[31] Gao X, Wu H W, Li W J, Tian Y, Zhang Y, Wu H, Yang L, Zou G Q, Hou H S, Ji X B. H+-insertion boosted α-MnO2 for an a-queous Zn-ion battery[J]. Small, 2020, 16(5): 1905842.
[32] Zhao Y, Wang Y N, Zhao Z M, Zhao J W, Xin T, Wang N, Liu J Z. Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode[J]. Energy Storage Mater., 2020, 28: 64-72.
文章导航

/