太阳能光(电)催化固氮研究进展
收稿日期: 2023-12-01
修回日期: 2024-01-02
录用日期: 2024-01-05
网络出版日期: 2024-01-15
Recent Advances in Solar Photo(electro)catalytic Nitrogen Fixation
Received date: 2023-12-01
Revised date: 2024-01-02
Accepted date: 2024-01-05
Online published: 2024-01-15
氨(NH3)是一种现代社会必需的化学物质。目前,工业上合成NH3仍然采用的是Haber-Bosch过程,即以H2和N2为反应物在铁基催化剂的作用下于高温(400-600 oC)高压(20-40 Mpa)下将N2转化为NH3。然而,其效率只有10%-15%,同时造成大量的能源消耗,而且CO2排放不可避免。开发构建可持续发展的清洁友好的新能源体系是解决能源危机和环境污染问题、实现碳达峰和碳中和的关键战略。半导体光(电)催化固氮可以利用绿色无污染的太阳能制取重要的基础化工原料氨,有望代替传统的化工制氨工艺,解决其能源消耗严重和环境污染的问题。本文概述了光(电)催化固氮反应及其影响因素、光催化、电催化和光电催化固氮反应实验装置与基本特征、光(电)催化固氮反应催化剂研究进展、光电催化固氮反应机理,着重论述了半导体光催化剂、光(电)催化固氮体系以及光催化固氮机理的最新进展,并对太阳能光催化固氮技术加以评述和展望。
马俊博 , 林生 , 林志群 , 孙岚 , 林昌健 . 太阳能光(电)催化固氮研究进展[J]. 电化学, 2024 , 30(3) : 2314003 . DOI: 10.61558/2993-074X.3443
Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400-600 oC) and extremely highpressure (20-40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. Within this framework, semiconductor photocatalytic nitrogen fixation leverages green and pollution-free solar energy to produce NH3 — an essential chemical raw material. This innovative process offers a sustainable alternative to the conventional chemical NH3 production method that involves tremendous energy consumption and environmental pollution. Herein, this review provides a comprehensive overview of the photo(electroc)catalytic nitrogen fixation reaction, covering influencing factor, experimental equipment of photocatalysis, electrocatalysis and photoelectrocatalysis, characteristics, and reaction mechanism. Particularly, recent advances in semiconductor photocatalyst, photo(electro)catalytic nitrogen fixation system, and photo(electro)catalytic nitrogen fixation mechanism are discussed. Future research directions in solar photo(electro)catalytic nitrogen fixation technology are also outlined.
Key words: Solar energy; Photo(electro)catalysis; Nitrogen fixation
[1] | Rao L, Xu X, Adamo C. Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase[J]. ACS Catal., 2016, 6(3): 1567-1577. |
[2] | Lai F, Zong W, He G, Xu Y, Huang H, Weng B, Rao D, Martens J A, Hofkens J, Parkin I P, Liu T. N2 Electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface[J]. Angew. Chem. Int. Ed., 2020, 59(32): 13320-13327. |
[3] | Sim H Y F, Chen J R T, Koh C S L, Lee H K, Han X, Phan-Quang G C, Pang J Y, Lay C L, Pedireddy S, Phang I Y, Yeow E K L, Ling X Y. ZIF-induced d-band modification in a bimetallic nanocatalyst: Achieving over 44% efficiency in the ambient nitrogen reduction reaction[J]. Angew. Chem. Int. Ed., 2020, 59(39): 16997-17003. |
[4] | Hochman G, Goldman A S, Felder F A, Mayer J M, Miller A J M, Holland P L, Goldman L A, Manocha P, Song Z, Aleti S. Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia[J]. ACS Sustain. Chem. Eng., 2020, 8(24): 8938-8948. |
[5] | Wang Z Q, Li C J, Deng K, Xu Y, Xue H R, Li X N, Wang L, Wang H J. Ambient nitrogen reduction to ammonia electrocatalyzed by bimetallic PdRu porous nanostructures[J]. ACS Sustain. Chem. Eng., 2018, 7(2): 2400-2405. |
[6] | Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store[J]. Nat. Chem., 2012, 4(11): 934-940. |
[7] | Suryanto B H R, Du H L, Wang D, Chen J, Simonov A N, Macfarlane D R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nat. Catal., 2019, 2(4): 290-296. |
[8] | Wang S C, Liu G, Wang L Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting[J]. Chem Rev, 2019, 119(8): 5192-5247. |
[9] | Li S J, Bao D, Shi M M, Wulan B R., Yan J M, Jiang Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Adv. Mater., 2017, 29(33): 170001. |
[10] | Chu K, Cheng Y H, Li Q Q, Liu Y P, Tian Y. Fe-doping induced morphological changes, oxygen vacancies and Ce3+-Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation[J]. J. Mater. Chem. A, 2020, 8(12): 5865-5873. |
[11] | Zhang R, Guo H R, Yang L, Wang Y, Niu Z G, Huang H, Chen H Y, Xia L, Li T S, Shi X F, Sun X P, Li B H, Liu Q. Electrocatalytic N2 fixation over hollow VO2microspheres at ambient conditions[J]. Chemelectrochem, 2019, 6(4): 1014-1018. |
[12] | Guo C, Ran J, Vasileff A, Qiao S Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy Environ. Sci., 2018, 11(1): 45-56. |
[13] | Kumar D, Pal S, Krishnamurty S. N2 activation on Al metal clusters: catalyzing role of BN-doped graphene support[J]. Phys. Chem. Chem. Phys., 2016, 18(40): 27721-27727. |
[14] | Bezdek M J, Chirik P J. Expanding boundaries: N2 cleavage and functionalization beyond early transition metals[J]. Angew. Chem. Int. Ed., 2016, 55(28): 7892-7896. |
[15] | Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catal. Today, 2017, 286: 57-68. |
[16] | Morales-Guio C G, Stern L A, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem. Soc. Rev., 2014, 43(18): 6555-6569. |
[17] | Hu G, Hu C X, Zhu Z Y, Zhang L, Wang Q, Zhang H L. Construction of Au/CuO/Co3O4 tricomponent heterojunction nanotubes for enhanced photocatalytic oxygen evolution under visible light irradiation[J]. ACS Sustain. Chem. Eng., 2018, 6(7): 8801-8808. |
[18] | Sun Y, Sinev I, Ju W, Bergmann A, Dresp S, Kühl S, Sp?ri C, Schmies H, Wang H, Bernsmeier D, Paul B, Schmack R, Kraehnert R, Roldan Cuenya B, Strasser P. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catal., 2018, 8(4): 2844-2856. |
[19] | Xu F Y, Meng K, Cheng B, Wang S Y, Xu J S, Yu J G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat. Commun., 2020, 11(1): 4613. |
[20] | Dong G H, Ho W K, Wang C Y. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. J. Mater. Chem. A, 2015, 3(46): 23435-23441. |
[21] | Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. J. Am. Chem. Soc., 2017, 139(31): 10929-10936. |
[22] | Xiang X J, Wang Z, Shi X F, Fan M K, Sun X P. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods[J]. Chemcatchem, 2018, 10(20): 4530-4535. |
[23] | Guo W H, Liang Z B, Zhao J L, Zhu B J, Cai K T, Zou R Q, Xu Q. Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature[J]. Small Methods, 2018, 2(12): 1800204. |
[24] | Jang Y J, Lindberg A E, Lumley M A, Choi K S. Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes[J]. ACS Energy Lett., 2020, 5(6): 1834-1839. |
[25] | Oshikiri T, Ueno K, Misawa H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation[J]. Angew. Chem. Int. Ed., 2014, 53(37): 9802-9805. |
[26] | Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M. Charge carrier dynamics of standard TiO2 catalysts revealed by femtosecond diffuse reflectance spectroscopy[J]. J. Phys. Chem. B, 1999, 103(16): 3120-3127. |
[27] | Alexander B D, Kulesza P J, Rutkowska I, Solarska R, Augustynski J. Metal oxide photoanodes for solar hydrogen production[J]. J. Mater. Chem., 2008, 18(20): 2298-2303. |
[28] | Bak T, Nowotny J, Rekas M, Sorrell C C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects[J]. Int. J. Hydrogen Energy, 2002, 27(10): 991-1022. |
[29] | Medford A J, Hatzell M C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook[J]. ACS Catal., 2017, 7(4): 2624-2643. |
[30] | Wang W K, Zhou H J, Liu Y Y, Zhang S B, Zhang Y X, Wang G Z, Zhang H M, Zhao H J. Formation of BNC coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance[J]. Small, 2020, 16(13): e1906880. |
[31] | Xiao C, Hu H, Zhang X, Macfarlane D R. Nanostructured gold/bismutite hybrid heterocatalysts for plasmon-enhanced photosynthesis of ammonia[J]. ACS Sustain. Chem. Eng., 2017, 5(11): 10858-10863. |
[32] | Di J, Xia J, Chisholm M F, Zhong J, Chen C, Cao X, Dong F, Chi Z, Chen H, Weng Y X, Xiong J, Yang S Z, Li H, Liu Z, Dai S. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation[J]. Adv. Mater., 2019, 31(28): e1807576. |
[33] | Zhao Y, Zhao Y, Waterhouse G I N, Zheng L, Cao X, Teng F, Wu L Z, Tung C H, O'hare D, Zhang T. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation[J]. Adv. Mater., 2017, 29(42): 1703828. |
[34] | Zhao Y, Zhao Y, Shi R, Wang B, Waterhouse G I N, Wu L Z, Tung C H, Zhang T. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm[J]. Adv. Mater., 2019, 31(16): e1806482. |
[35] | Zhao Y, Hoivik N, Wang K Y. Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting[J]. Nano Energy, 2016, 30: 728-744. |
[36] | Ghosh S, Kouame N A, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert P H, Remita H. Conducting polymer nanostructures for photocatalysis under visible light[J]. Nat. Mater., 2015, 14(5): 505-511. |
[37] | Yang J H, Wang D G, Han H X, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc. Chem. Res., 2013, 46(8): 1900-1909. |
[38] | Liu S Z, Li D G, Sun H Q, Ang H M, Tade M O, Wang S B. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis[J]. J. Colloid Interface Sci., 2016, 468: 176-182. |
[39] | Nguyen C C, Vu N N, Do T O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications[J]. J. Mater. Chem. A, 2015, 3(36): 18345-18359. |
[40] | Reza Gholipour M, Dinh C T, Beland F, Do T O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting[J]. Nanoscale, 2015, 7(18): 8187-8208. |
[41] | Yang H Y, Zhou Y M, Wang Y Y, Hu S C, Wang B B, Liao Q, Li H F, Bao J H, Ge G Y, Jia S K. Three-dimensional flower-like phosphorus-doped g-C3N4 with a high surface area for visible-light photocatalytic hydrogen evolution[J]. J. Mater. Chem. A, 2018, 6(34): 16485-16494. |
[42] | Xie S J, Zhang Q H, Liu G D, Wang Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chem. Commun. (Camb.), 2016, 52(1): 35-59. |
[43] | Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. J. Am. Chem. Soc., 2017, 139(31): 10929-10936. |
[44] | Feng X W, Chen H, Jiang F, Wang X. Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: Oxygen and sulfur co-doping for crystal and electronic structure modulation[J]. J. Colloid Interface Sci., 2018, 509: 298-306. |
[45] | Li H, Shang J, Shi J G, Zhao K, Zhang L Z. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway[J]. Nanoscale, 2016, 8(4): 1986-1993. |
[46] | Luo J Y, Bai X X, Li Q, Yu X, Li C Y, Wang Z N, Wu W W, Liang Y P, Zhao Z H, Liu H. Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance[J]. Nano Energy, 2019, 66: 104187. |
[47] | Hu S Z, Chen X, Li Q, Li F Y, Fan Z P, Wang H, Wang Y J, Zheng B H, Wu G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis[J]. Appl. Catal. B: Environ., 2017, 201: 58-69. |
[48] | Saadatjou N, Jafari A, Sahebdelfar S. Ruthenium nanocatalysts for ammonia synthesis: A review[J]. Chem. Eng. Commun., 2014, 202(4): 420-448. |
[49] | Ling C Y, Niu X H, Li Q, Du A J, Wang J L. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. J. Am. Chem. Soc., 2018, 140(43): 14161-14168. |
[50] | Simpson F B, Burris R H. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase[J]. Science, 1984, 224 (4653): 1095. |
[51] | Indra A, Menezes P W, Kailasam K, Hollmann D, Schroder M, Thomas A, Bruckner A, Driess M. Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?[J]. Chem. Commun. (Camb.), 2016, 52(1): 104-107. |
[52] | Wang D, Liu Z P, Yang W M. Revealing the size effect of platinum cocatalyst for photocatalytic hydrogen evolution on TiO2 support: A DFT study[J]. ACS Catal., 2018, 8(8): 7270-7278. |
[53] | Kong C, Li Z, Lu G X. The dual functional roles of Ru as co-catalyst and stabilizer of dye for photocatalytic hydrogen evolution[J]. Int. J. Hydrogen Energy, 2015, 40 (17): 5824-5830. |
[54] | Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2[J]. J. Photochem. Photobiol. A: Chem., 1996, 96(1): 181-185. |
[55] | Abghoui Y, Garden A L, Howalt J G, Vegge T, Skúlason E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments[J]. ACS Catal., 2015, 6(2): 635-646. |
[56] | Shi A Y, Li H H, Yin S, Hou Z L, Rong J Y, Zhang J C, Wang Y H. Photocatalytic NH3 versus H2 evolution over g-C3N4/CsxWO3: O2 and methanol tipping the scale[J]. Appl. Catal. B: Environ., 2018, 235: 197-206. |
[57] | Lee J, Park H, Choi W. Selective Photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water[J]. Environ. Sci. Technol., 2002, 36(24): 5462-5468. |
[58] | Li R. Photocatalytic nitrogen fixation: An attractive approach for artificial photocatalysis[J]. Chin. J. Catal., 2018, 39(7): 1180-1188. |
[59] | Schrauzer G N, Guth T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. J. Am. Chem. Soc., 1977, 99(22): 7189-7193. |
[60] | Li Y H, Chen X, Zhang M J, Zhu Y M, Ren W J, Mei Z W, Gu M, Pan F. Oxygen vacancy-rich MoO3-x nanobelts for photocatalytic N2 reduction to NH3 in pure water[J]. Catal. Sci. Technol., 2019, 9(3): 803-810. |
[61] | Sun S M, Li X M, Wang W Z, Zhang L, Sun X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2[J]. Appl. Catal. B: Environ., 2017, 200: 323-329. |
[62] | Zhang G, Ji Q H, Zhang K, Chen Y, Li Z H, Liu H J, Li J H, Qu J H. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation[J]. Nano Energy, 2019, 59: 10-16. |
[63] | Xiao C L, Wang H P, Zhang L, Sun S M, Wang W Z. Enhanced photocatalytic nitrogen fixation on MoO2/BiOCl composite[J]. Chemcatchem, 2019, 11(24): 6467-6472. |
[64] | Mou H Y, Wang J F, Yu D K, Zhang D L, Chen W J, Wang Y Q, Wang D B, Mu T C. Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step pyrolysis for solar-driven ambient ammonia synthesis[J]. ACS Appl. Mater. Interfaces, 2019, 11 (47): 44360-44365. |
[65] | Ithisuphalap K, Zhang H G, Guo L, Yang Q G, Yang H P, Wu G. Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis[J]. Small Methods, 2018, 3(6): 1800352. |
[66] | Van Tamelen E E, Akermark B. Electrolytic reduction of molecular nitrogen[J]. J. Am. Chem. Soc., 1968, 90(16): 4492-4493. |
[67] | Wang J, Chen S L, Li Z J, Li G K, Liu X. Recent advances in electrochemical synthesis of ammonia through nitrogen reduction under ambient conditions[J]. Chemelectrochem, 2020, 7(5): 1067-1079. |
[68] | Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100. |
[69] | Licht S, Cui B, Wang B, Li F F, Lau J, Liu S. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science, 2014, 345(6197): 637-640. |
[70] | Manjunatha R, Schechter A. Electrochemical synthesis of ammonia using ruthenium-platinum alloy at ambient pressure and low temperature[J]. Electrochem. Commun., 2018, 90: 96-100. |
[71] | Liu G Q, Cui Z Q, Han M M, Zhang S B, Zhao C J, Chen C, Wang G Z, Zhang H M. Ambient electrosynthesis of ammonia on a core-shell-structured Au@CeO2 catalyst: Contribution of oxygen vacancies in CeO2[J]. Chem.-Eur. J., 2019, 25 (23): 5904-5911. |
[72] | Wang J, Yu L, Hu L, Chen G, Xin H L, Feng X F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nat. Commun., 2018, 9(1): 1795. |
[73] | Zhang L L, Cong M Y, Ding X, Jin Y, Xu F F, Wang Y, Chen L, Zhang L X. A janus Fe-SnO2 catalyst that enables bifunctional electrocatalytic nitrogen fixation[J]. Angew. Chem. Int. Ed, 2020, 59(27): 10888-10893. |
[74] | Kim K, Yoo C Y, Kim J N, Yoon H C, Han J I. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. J. Electrochem. Soc., 2016, 163(14): F1523-F1526. |
[75] | Li C, Wang T, Zhao Z J, Yang W, Li J F, Li A, Yang Z, Ozin G A, Gong J. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5278-5282. |
[76] | Zhu D, Zhang L, Ruther R E, Hamers R J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction[J]. Nat. Mater., 2013, 12(9): 836-841. |
[77] | Li M X, Lu Q J, Liu M L, Yin P, Wu C Y, Li H T, Zhang Y Y, Yao S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction[J]. ACS Appl. Mater. Interfaces, 2020, 12(34): 38266-38274. |
[78] | Li M Q C O, Huang H, Low J X, Gao C, Long R., Xiong Y J. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction[J]. Small Methods, 2018, 3(6): 1673-1674. |
[79] | Wang Q R, Guo J P, Chen P. Recent progress towards mild-condition ammonia synthesis[J]. J. Energy Chem., 2019, 36: 25-36. |
[80] | Bai Y J, Bai H Y, Qu K G, Wang F G, Guan P, Xu D B, Fan W Q, Shi W D. In-situ approach to fabricate BiOI photocathode with oxygen vacancies: Understanding the N2 reduced behavior in photoelectrochemical system[J]. Chem. Eng. J., 2019, 362: 349-356. |
[81] | Ye L Q, Han C Q, Ma Z Y, Leng Y M, Li J, Ji X X, Bi D Q, Xie H Q, Huang Z X. Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light[J]. Chem. Eng. J., 2017, 307: 311-318. |
[82] | Ye W, Arif M, Fang X Y, Mushtaq M A, Chen X B, Yan D P. Efficient photoelectrochemical route for the ambient reduction of N2 to NH3 based on nanojunctions assembled from MoS2 nanosheets and TiO2[J]. ACS Appl. Mater. Inter., 2019, 11(32): 28809-28817. |
[83] | Lee H K, Koh C S L, Lee Y H, Liu C, Phang I Y, Han X, Tsung C K, Ling X Y. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Sci. Adv., 2018, 4(3): eaar3208. |
[84] | Wu Z X, Zhao Y, Jin W, Jia B H, Wang J, Ma T Y. Recent progress of vacancy engineering for electrochemical energy conversion related applications[J]. Adv. Funct. Mater., 2021, 31(9): 2009070. |
[85] | Pan J, Jiang S P. Synthesis of nitrogen doped faceted titanium dioxide in pure brookite phase with enhanced visible light photoactivity[J]. J. Colloid Interface Sci., 2016, 469: 25-30. |
[86] | Gurylev V, Mishra M, Su C Y, Perng T P. Enabling higher photoelectrochemical efficiency of TiO2 via controlled formation of a disordered shell: an alternative to the hydrogenation process[J]. Chem. Commun. (Camb.), 2016, 52(48): 7604-7607. |
[87] | Vu M H, Sakar M, Nguyen C C, Do T O. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation[J]. ACS Sustain. Chem. Eng., 2018, 6(3): 4194-4203. |
[88] | Xiong J, Di J, Xia J X, Zhu W S, Li H M. Surface defect engineering in 2D nanomaterials for photocatalysis[J]. Adv. Funct. Mater., 2018, 28(39): 1801983. |
[89] | Li H, Shang J, Ai Z H, Zhang L Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J. Am. Chem. Soc., 2015, 137(19): 6393-6399. |
[90] | Wang S Y, Hai X, Ding X, Chang K, Xiang Y G, Meng X G, Yang Z X, Chen H, Ye J H. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water[J]. Adv. Mater., 2017, 29(31): 1701774. |
[91] | Zhang J Y, Yue L, Zeng Z H, Zhao C R, Fang L J, Hu X, Lin H J, Zhao L H, He Y M. Preparation of NaNbO3 microcube with abundant oxygen vacancies and its high photocatalytic N2 fixation activity in the help of Pt nanoparticles[J]. J. Colloid Interface Sci., 2023, 636: 480-491. |
[92] | Lin S, Chen Y H, Fu J J, Sun L, Jiang Q R, Li J F, Cheng J, Lin C J, Tian Z Q. Photoelectrocatalytic nitrogen fixation with Vo-BiOBr/TiO2 heterostructured photoelectrode as photocatalyst[J]. Int. J. Hydrogen Energy, 2022, 47: 41553-41563. |
[93] | Zhu M S, Zhai C Y, Sun M J, HuY F, Yan B, Du Y K. Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation[J]. Appl. Catal. B Environ, 2017, 203: 108-115. |
[94] | Zhang X D, Yan J, Zheng F Y, Zhao J, Lee L Y S. Designing charge transfer route at the interface between WP nanoparticle and g-C3N4 for highly enhanced photocatalytic CO2 reduction reaction[J]. Appl. Catal. B: Environ., 2021, 286: 119879. |
[95] | Xie F Y, Dong G F, Wu K C, Li Y F, Wei M D, Du S W. In situ synthesis of g-C3N4 by glass-assisted annealing route to boost the efficiency of perovskite solar cells[J]. J. Colloid Interface Sci., 2021, 591: 326-333. |
[96] | Li G S, Lian Z C, Wang W C, Zhang D Q, Li H X. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy, 2016, 19: 446-454. |
[97] | Mohamed H S H, Wu L, Li C F, Hu Z Y, Liu J, Deng Z, Chen L H, Li Y., Su B L. In-situ growing mesoporous CuO/O-doped g-C3N4 nanospheres for highly enhanced lithium storage[J]. ACS Appl. Mater. Interfaces, 2019, 11(36): 32957-32968. |
[98] | Chen J J, Mao Z Y, Zhang L X, Wang D J, Xu R, Bie L J, Fahlman B D. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes[J]. ACS Nano, 2017, 11(12): 12650-12657. |
[99] | Zeng D, Zhou T, Ong W J, Wu M, Duan X, Xu W, Chen Y, Zhu Y A, Peng D. L. Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light[J]. ACS Appl. Mater. Interfaces, 2019, 11(6): 5651-5660. |
[100] | You Y, Wang S B, Xiao K, Ma T Y, Zhang Y H, Huang H W. Z-scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production[J]. ACS Sustain. Chem. Eng., 2018, 6(12): 16219-16227. |
[101] | Dai J Y, Song J B, Qiu Y, Wei J J, Hong Z Z, Li L, Yang H H. Gold nanoparticle-gecorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination[J]. ACS Appl. Mater. Interfaces, 2019, 11(11): 10589-10596. |
[102] | Li Q Y, He L Z, Sun C H, Zhang X W. Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction[J]. J. Phys. Chem. C, 2017, 121(49): 27563-27568. |
[103] | Abghoui Y, Skúlason E. Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis[J]. J. Phys. Chem. C, 2017, 121(11): 6141-6151. |
[104] | Abghoui Y, Garden A L, Hlynsson V F, Bjorgvinsdottir S, Olafsdottir H, Skulason E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Phys. Chem. Chem. Phys., 2015, 17(7): 4909-4918. |
[105] | Lv C, Qian Y M, Yan C S, Ding Y, Liu Y Y, Chen G, Yu G H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions[J]. Angew. Chem. Int. Ed., 2018, 57 (32): 10246-10250. |
[106] | Spatzal T, Aksoyoglu M, Zhang L, Andrade S L, Schleicher E, Weber S, Rees D C, Einsle O. Evidence for interstitial carbon in nitrogenase FeMo cofactor[J]. Science, 2011, 334(6058): 940. |
[107] | Lee C C, Hu Y, Ribbe M W. ATP-independent formation of hydrocarbons catalyzed by isolated nitrogenase cofactors[J]. Angew. Chem. Int. Ed., 2012, 51(8): 1947-1949. |
[108] | Hoffman B M, Lukoyanov D, Yang Z Y, Dean D R, Seefeldt L C. Mechanism of nitrogen fixation by nitrogenase: The next stage[J]. Chem Rev, 2014, 114(8): 4041-4062. |
[109] | Banerjee A, Yuhas B D, Margulies E A, Zhang Y, Shim Y, Wasielewski M R., Kanatzidis M G. Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels[J]. J. Am. Chem. Soc., 2015, 137(5): 2030-2034. |
[110] | Ohki Y, Uchida K, Tada M, Cramer R E, Ogura T, Ohta T. N2 activation on a molybdenum-titanium-sulfur cluster[J]. Nat. Commun., 2018, 9(1): 3200. |
[111] | Zhang L, Ji X Q, Ren X, Ma Y J, Shi X F, Tian Z Q, Asiri A M, Chen L, Tang B, Sun X P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies[J]. Adv. Mater., 2018, 30(28): e1800191. |
[112] | Zhang G H, Yuan X X, Xie B, Meng Y, Ni Z M, Xia S J. S vacancies act as a bridge to peomote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis[J]. Cheml. Eng. J., 2022, 433(3): 133670. |
[113] | Shi Z S, Yang W Q, Gu Y T, Liao T, Sun Z Q. Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design[J]. Adv. Sci., 2016, 19: 446-454. |
[114] | Wang S H, Zhan J W, Chen K, Ali A, Zeng L H, Zhao H, Hu W L, Zhu L X, Xu X L. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction[J]. ACS Sustain. Chem. Eng., 2020, 8(22): 8214-8222. |
[115] | Zhang Z R, Liu C X, Feng C, Gao P F, Liu Y L, Ren F N, Zhu Y F, Cao C, Yan W S, Si R, Zhou S M, Zeng J. Breaking the local symmetry of LiCoO2 via atomic doping for efficient oxygen evolution[J]. Nano Lett., 2019, 19(12): 8774-8779. |
[116] | Skulason E, Bligaard T, Gudmundsdottir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jonsson H, Norskov J K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Phys. Chem. Chem. Phys., 2012, 14(3): 1235-1245. |
[117] | Zhao W R, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y. Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger[J]. Appl. Catal. B: Environ., 2014, 144: 468-477. |
[118] | Hu S Z, Chen X, Li Q, Li F Y, Fan Z P, Wang H, Wang Y J, Zheng B H, Wu G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis[J]. Appl. Catal. B: Environ., 2017, 201: 58-69. |
[119] | Li X F, Li Q K, Cheng J, Liu L, Yan Q, Wu Y, Zhang X H, Wang Z Y, Qiu Q, Luo Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene[J]. J. Am. Chem. Soc., 2016, 138(28): 8706-8709. |
[120] | Hu S Z, Chen X, Li Q, Li F Y, Fan Z P, Wang H, Wang Y J, Zheng B H, Wu G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis[J]. Appl. Catal. B: Environ., 2017(201) 58-69. |
[121] | Zhang N, Jalil A, Wu D X, Chen S M, Liu Y F, Gao C, Ye W, Qi Z M, Ju H X, Wang C M, Wu X J, Song L, Zhu J F, Xiong Y J. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation[J]. J. Am. Chem. Soc., 2018, 140(30): 9434-9443. |
[122] | Wang J F, Zhao C R, Yuan S D, Li X J, Zhang J Y, Hu X, Lin H J, Wu Y, He Y M. One-step fabrication of Cu-doped Bi2MoO6 microflower for enhancing performance in photocatalytic nitrogen fixation[J]. J. Colloid Interface Sci., 2023, 638: 427-438. |
[123] | Wang J F, Guan L F, Yuan S D, Zhang J Y, Zhao C R, Hu X, Teng B T, Wu Y, He Y M. Greatly boosted photocatalytic N2-to-NH3 conversion by bismuth doping in CdMoO4: Band structure engineering and N2adsorption modification[J]. Sep. Purif. Technol., 2023, 314: 123554. |
[124] | Luo Q, Chen L Y, Duan B H, Gu Z Z, Liu J, Xu M L, Duan C Y. Porous N-doped graphitic carbon assembled one-dimensional hollow structures as high performance electrocatalysts for ORR[J]. RSC Adv., 2016, 6(15): 12467-12471. |
[125] | Xu F C, Wu F F, Zhu K L, Fang Z P, Jia D M, Wang Y K, Jia G, Low J X, Ye W, Sun Z T. Boron doping and high curvature in Bi nanorolls for promoting photoelectrochemical nitrogen fixation[J]. Appl. Catal. B: Environ., 2021, 284: 119689. |
[126] | Yu X M, Han P, Wei Z X, Huang L S, Gu Z X, Peng S J, Ma J M, Zheng G F. Boron-doped graphene for electrocatalytic N2 Reduction[J]. Joule, 2018, 2 (8): 1610-1622. |
[127] | Chen C, Yan D F, Wang Y, Zhou Y Y, Zou Y Q, Li Y F, Wang S Y. BN pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency[J]. Small, 2019, 15(7): e1805029. |
[128] | Li H, Shang J, Shi J G, Zhao K, Zhang L Z. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway[J]. Nanoscale, 2016, 8 (4): 1986-1993. |
[129] | Ran J R, Zhang J, Yu J G, Jaroniec M, Qiao S Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chem. Soc. Rev., 2014, 43(22): 7787-7812. |
[130] | Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2[J]. J. Photochem. Photobiol. A: Chem., 1996, 96(1): 181-185. |
[131] | Luo M H, Lu P, Yao W F, Huang C P, Xu Q J, Wu Q, Kuwahara Y, Yamashita H. Shape and composition effects on photocatalytic hydrogen production for Pt-Pd alloy cocatalysts[J]. ACS Appl. Mater. Interfaces, 2016, 8(32): 20667-20674. |
[132] | Qiu P X, Xu C M, Zhou N, Chen H, Jiang F. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Appl. Catal. B: Environ., 2018, 221: 27-35. |
[133] | Mao C L, Yu L H, Li J, Zhao J C, Zhang L Z. Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx[J]. Appl. Catal. B: Environ., 2018, 224: 612-620. |
[134] | Zeng H, Terazono S, Tanuma T. A novel catalyst for ammonia synthesis at ambient temperature and pressure: Visible light responsive photocatalyst using localized surface plasmon resonance[J]. Catal. Commun., 2015, 59: 40-44. |
[135] | Qiu P X, Xu C M, Zhou N, Chen H, Jiang F. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Appl. Catal. B: Environ., 2018, 221: 27-35. |
[136] | Wang H B, Li H, Zhang M L, Song Y X, Huang J, Huang H, Shao M W, Liu Y, Kang Z H. Carbon dots enhance the nitrogen fixation activity of azotobacter chroococcum[J]. ACS Appl. Mater. Interfaces, 2018, 10 (19): 16308-16314. |
[137] | Li X M, Wang W Z, Jiang D, Sun S M, Zhang L, Sun X. Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids[J]. Chem. Eur. J., 2016, 22 (39): 13819-13822. |
[138] | Oshikiri T, Ueno K, Misawa H. Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation[J]. Angew. Chem. Int. Ed., 2016, 55(12): 3942-3946. |
[139] | Yang J H, Guo Y Z, Jiang R B, Qin F, Zhang H, Lu W Z, Wang J F, Yu J C. High-efficiency "working-in-tandem" nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets[J]. J. Am. Chem. Soc., 2018, 140(27): 8497-8508. |
[140] | Vu M H, Sakar M, Hassanzadeh-Tabrizi S A, Do T O. Photo(electro)catalytic nitrogen fixation: Problems and possibilities[J]. Adv. Mater. Interfaces, 2019, 6(12): 1900091. |
[141] | Bharath G, Liu C, Banat F, Kumar A, Hai A B, Nadda A K, Gupta V K, Abu Haijia M, Balamurugan. Plasmonic Au nanoparticles anchored 2D WS2@RGO for high-performance photoelectrochemical nitrogen reduction to ammonia[J]. Chem. Eng. J, 2023, 465: 143040. |
[142] | Lin S, Ma J B, Fu J J, Sun L, Zhang H, Cheng J, Li J F. Constructing Vo-TiO2/Ag/TiO2 heterojunction for efficient photoelectrochemical nitrogen reduction to ammonia[J]. J. Phys. Chem. C, 2023, 127: 1345-1354. |
[143] | Mei Q F, Zhang F Y, Wang N, Lu W S, Su X T, Wang W, Wu R L. Photocatalysts: Z-scheme heterojunction constructed with titanium dioxide[J]. Chin. J. Inorg. Chem., 2019, 35(8): 1321-1339. |
[144] | Cao S H, Zhou N, Gao F H, Chen H, Jiang F. All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation[J]. Appl. Catal. B: Environ., 2017, 218: 600-610. |
[145] | Zhao C R, Li X J, Yue L, Yuan S D, Ren X J, Zeng Z H, Hu X, Wu Y, He Y M. One-step preparation of novel Bi-Bi2O3/CdWO4 Z-scheme heterojunctions with enhanced performance in photocatalytic NH3 synthesis[J]. J. Alloy Compd., 2023, 968: 171956. |
[146] | Yan Z H, Ji M X, Xia J X, Zhu H Y. Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: One step closer to a sustainable energy future[J]. Adv. Energy Mater., 2019, 10(11): 1902020. |
/
〈 |
|
〉 |