欢迎访问《电化学(中英文)》期刊官方网站,今天是
展望

面向高性能锂-硫二次电池应用的非对称电极-电解质界面

  • 丑佳 ,
  • 王雅慧 ,
  • 王文鹏 ,
  • 辛森 ,
  • 郭玉国
展开
  • a中国科学院化学研究所,北京 100190
    b中国科学院大学,北京 100049

收稿日期: 2023-04-10

  修回日期: 2023-06-11

  录用日期: 2023-06-29

  网络出版日期: 2023-06-30

Asymmetric Electrode-Electrolyte Interfaces for High-Performance Rechargeable Lithium-Sulfur Batteries

  • Jia Chou ,
  • Ya-Hui Wang ,
  • Wen-Peng Wang ,
  • Sen Xin ,
  • Yu-Guo Guo
Expand
  • aCAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
Tel: (86-10)82617069, E-mail: ygguo@iccas.ac.cn
*Tel: (86-10)62568158, E-mail: xinsen08@iccas.ac.cn;

Received date: 2023-04-10

  Revised date: 2023-06-11

  Accepted date: 2023-06-29

  Online published: 2023-06-30

摘要

锂-硫电池具有高的理论电芯比能量和低成本,是极具应用前景的下一代电化学储能技术,已被广泛研究。实用化锂-硫电池技术目前面临的挑战主要包括正极侧电活性硫物种在充放电过程中的不可逆损失,负极侧枝晶形核生长,以及因活性硫迁移至负极而导致的界面副反应,上述问题会导致电池工况条件下性能迅速衰退,引发电池失效和安全问题。本工作中,我们提出通过设计非对称的电极-电解质界面稳定锂-硫电池正负极电化学,协同促进电极/电解质体相和界面电荷输运,从而延长电池循环寿命,显著提升电化学性能。本文所讨论的策略有望指导电池界面理性设计,助力实现高性能的锂-硫电池。

本文引用格式

丑佳 , 王雅慧 , 王文鹏 , 辛森 , 郭玉国 . 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学, 2023 , 29(9) : 2217009 . DOI: 10.13208/j.electrochem.2217009

Abstract

With a high cell-level specific energy and a low cost, lithium-sulfur (Li-S) battery has been intensively studied as one of the most promising candidates for competing the next-generation energy storage campaign. Currently, the practical use of Li-S battery is hindered by the rapidly declined storage performance during battery operation, as caused by irreversible loss of electroactive sulfide species at the cathode, dendrite formation at the anode and parasitic reactions at the electrode-electrolyte interface due to unfavorable cathode-anode crosstalk. In this perspective, we propose to stabilize the Li-S electrochemistry, and improve the storage performance of battery by designing asymmetric electrode-electrolyte interfaces that helps to simultaneously address the differentiated issues at both electrodes and facilitate charge transfer in the electrode/electrolyte and across the interfaces. The strategies discussed would shed lights on reasonable design of battery interfaces towards realization of high-performance Li-S batteries.

参考文献

[1] Seh Z W, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634.
[2] Xu H H, Wang S F, Manthiram A. Hybrid lithium-sulfur batteries with an advanced gel cathode and stabilized lithium-metal anode[J]. Adv. Energy Mater., 2018, 8(23): 1800813.
[3] Wang L L, Ye Y S, Chen N, Huang Y X, Li L, Wu F, Chen R J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2018, 28(38): 1800919.
[4] Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(24): 1700260.
[5] Huang S, Guan R T, Wang S J, Xiao M, Han D M, Sun L Y, Meng Y Z. Polymers for high performance Li-S batteries: Material selection and structure design[J]. Prog. Polym. Sci., 2018, 89: 19-60.
[6] Barghamadi M, Best A S, Bhatt A I, Hollenkamp A F, Ruether T. Lithium-sulfur batteries —the solution is in the electrolyte, but is the electrolyte a solution?[J]. Energy Environ. Sci., 2014, 7(12): 3902-3920.
[7] Yan M, Wang W P, Yin Y X, Wan L J, Guo Y G. Interfacial design for lithium-sulfur batteries: From liquid to solid[J]. EnergyChem, 2019, 1(1): 100002.
[8] Nazar L F, Cuisinier M, Quan P. Lithium-sulfur batteries[J]. MRS Bull., 2014, 39(5): 436-442.
[9] Li W, Wang P, Zhang M, Pan H, He X W, He P, Zhou H S. Functional CNTs@EMIM+-Br- electrode enabling polysulfides confining and deposition regulating for solid-state Li-sulfur battery[J]. Small, 2023, 19(6): 2205809.
[10] Wang P F, He X, Lv Z C, Song S, Song X, Yi T F, Xu N, He P, Zhou H S. Light-driven polymer-based all-solid-state lithium-sulfur battery operating at room temperature[J]. Adv. Funct. Mater., 2023, 33(5): 2211074.
[11] Guo Y P, Li H Q, Zhai T Y. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Adv. Mater., 2017, 29(29): 1700007.
[12] Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
[13] Xin S, Chang Z W, Zhang X B, Guo Y G. Progress of rechargeable lithium metal batteries based on conversion reactions[J]. Natl. Sci. Rev., 2017, 4(1): 54-70.
[14] Zhang R, Li N W, Cheng X B, Yin Y X, Zhang Q, Guo Y G. Advanced micro/nanostructures for lithium metal anodes[J]. Adv. Sci., 2017, 4(3): 1600445.
[15] Xin S, You Y, Wang S, Gao H, Yin Y X, Guo Y G. Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects[J]. ACS Energy Lett., 2017, 2(6): 1385-1394.
[16] Lu D, Shao Y, Lozano T, Bennett W D, Graff G L, Polzin B, Zhang J, Engelhard M H, Saenz N T, Henderson W A. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Adv. Energy Mater., 2015, 5(3): 1400993.
[17] Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q. A review of solid electrolyte interphases on lithium metal anode[J]. Adv. Sci., 2016, 3(3): 1500213.
[18] Yasin G, Arif M, Mehtab T, Lu X, Yu D L, Muhammad N, Nazir M T, Song H H. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries[J]. Energy Storage Mater., 2020, 25: 644-678.
[19] Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): eabn4372.
[20] Kalaga K, Rodrigues M, Gullapalli H, Babu G, Ajayan P M. Quasi-solid electrolytes for high temperature lithium ion batteries[J]. ACS Appl. Mater. Inter., 2015, 7(46): 25777.
[21] Markevich E, Salitra G, Rosenman A, Talyosef Y, Chesneau F, Aurbach D. The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries[J]. J. Mater. Chem. A, 2015, 3(39): 19873-19883.
[22] Markevich E, Salitra G, Talyosef Y, Chesneau F, Aurbach D. Review—on the mechanism of quasi-solid-state lithiation of sulfur encapsulated in microporous carbons: Is the existence of small sulfur molecules necessary?[J]. J. Electrochem. Soc., 2017, 164: A6244-A6253.
[23] Hassoun J, Scrosati B. Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications[J]. Adv. Mater., 2010, 22(45): 5198.
[24] Yu X, Manthiram A. Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes[J]. Accounts Chem. Res., 2017, 50(11): 2653-2660.
[25] Liu Y, Elias Y, Meng J, Aurbach D, Pang Q. Electrolyte solutions design for lithium-sulfur batteries[J]. Joule, 2021, 5(9): 2323-2364.
[26] Hou L P, Zhang X Q, Li B Q, Zhang Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries[J]. Mater. Today, 2021, 45: 62.
[27] Zhao M, Li B Q, Zhang X Q, Huang J Q, Zhang Q. A perspective toward practical lithium-sulfur batteries[J]. ACS Central Sci., 2020, 6(7): 1095.
[28] Bhargav A, He J, Gupta A, Manthiram A. Lithium-sulfur batteries: Attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291.
[29] Zhao M, Li B Q, Peng H J, Yuan H, Huang J Q. Challenges and opportunities towards practical lithium-sulfur batteries under lean electrolyte conditions[J]. Angew. Chem. Int. Ed., 2019, 132(31): 2-20.
[30] Yama Da Y, Wang J H, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nat. Energy, 2019, 4(4): 269-280.
[31] Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv. Mater., 2018, 30(21): 1706102.
[32] Cuisinier M, Cabelguen P E, Adams B D, Garsuch A, Balasubramanian M, Nazar L F. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy Environ. Sci., 2014, 7(8): 2697-2750.
[33] Huang F F, Gao L J, Zou Y P, Ma G Q, Zhang J J, Xu S Q, Li Z X, Liang X. Akin solid-solid biphasic conversion Li-S battery revealed by coordinated carbonate electrolyte[J]. J. Mater. Chem. A., 2019, 7(20): 12498-12506.
[34] Gupta A, Bhargav A, Manthiram A. Highly solvating electrolytes for lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(6): 1803096.
[35] Zhang G, Peng H J, Zhao C Z, Chen X, Zhao L D, Li P, Huang J Q, Zhang Q. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2018, 57(51): 16732.
[36] Cuisinier M, Hart C, Balasubramanian M, Garsuch A, Nazar L F. Radical or not radical: Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes[J]. Adv. Energy Mater., 2015, 5(16): 1401801.
[37] Zou Q, Lu Y C. Solvent-dictated lithium sulfur redox reactions: An operando UV-vis spectroscopic study[J]. J. Phys. Chem. Lett., 2016, 7(8): 1518.
[38] Wang W P, Zhang J, Chou J, Yin Y X, You Y, Xin S, Guo Y G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries[J]. Adv. Energy Mater., 2021, 11(2): 2000791.
[39] Liu F Q, Wang W P, Yin Y X, Zhang S F, Guo Y G. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Sci. Adv., 2018, 4(10): eaat5383.
[40] Shen Y Q, Zeng F L, Zhou X Y, Wang A B, Wang W K, Yuan N Y, Ding J N. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium-sulfur batteries[J]. J. Energy Chem., 2020, 48: 267-276.
[41] Li Y J, Wang W Y, Liu X X, Mao E Y, Wang M T, Li G C, Fu L, Li Z, Eng AYS, She Z W, Sun Y M. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries[J]. Energy Storage Mater., 2019, 23: 261-268.
[42] Wang W P, Zhang J, Yin Y X, Duan H, Chou J, Li S Y, Yan M, Xin S, Guo Y G. A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries[J]. Adv. Mater., 2020, 32(23): 2000302.
[43] Fu K K, Gong Y, Hitz G T, McOwen D W, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1568.
[44] Wang Q S, Jin J, Wu X W. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte[J]. Phys. Chem. Chem. Phys., 2014, 16(39): 21225-21229.
[45] Wang Q S, Guo J, Wu T, Jin J, Yang J H, Wen Z Y. Improved performance of Li-S battery with hybrid electrolyte by interface modification[J]. Solid State Ion., 2017, 300: 67-72.
[46] Sun C Z, Huang X, Jin J, Lu Y, Wang Q, Yang J H, Wen Z Y. An ion-conductive Li1.5Al0.5Ge1.5(PO4)3-based composite protective layer for lithium metal anode in lithium-sulfur batteries[J]. J. Power Sources, 2018, 377(15): 36-43.
[47] Ozhabes Y, Gunceler D, Arias T A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression[J]. Physics, 2015: arXiv.1504.05799.
[48] Liu Z, Qi Y, Lin Y X, Chen L, Lu P, Chen L Q. Interfacial study on solid electrolyte interphase at Li metal anode: Implication for Li dendrite growth[J]. J. Electrochem. Soc., 2016, 163(3): A592.
[49] Fan X L, Ji X, Han F D, Yue J, Chen J, Chen L, Deng T, Jiang J J, Wang C S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Sci. Adv., 2018, 4(12): eaau9245.
[50] Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J, Guo Y G. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry[J]. Angew. Chem. Int. Ed., 2020, 59(29): 12069.
[51] Fu K, Gong Y H, Dai J Q, Gong A, Han X G, Yao Y G, Wang C W, Wang Y B, Chen Y N, Yan C Y, Li Y J, Wachsman E D, Hu L B. Flexible, solid-state, ion-conducting membrane with 3d garnet nanofiber networks for lithium batteries[J]. PNAS, 2016, 113(26): 7094-7099.
[52] Chen W P, Duan H, Shi J L, Qian Y, Wan J, Zhang X D, Sheng H, Guan B, Wen R, Yin Y X, Xin S, Guo Y G, Wan L J. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte[J]. J. Am. Chem. Soc., 2021, 143(15): 5717.
[53] Wang Y H, Yue J, Wang W P, Chen W P, Zhang Y, Yang Y G, Zhang J, Yin Y X, Zhang X, Xin S, Guo Y G. Constructing a stable interface between the sulfide electrolyte and the Li metal anode via a Li+-conductive gel polymer interlayer[J]. Mater. Chem. Front., 2021, 5(14): 5328-5335.
[54] Chen H, Zhou C J, Dong X R, Yan M, Liang J Y, Sin S, Wu X W, Guo Y G, Zeng X X. Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries[J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 22978-22986.
文章导航

/