欢迎访问《电化学(中英文)》期刊官方网站,今天是
快讯

单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂

  • 万紫轩 ,
  • Aidar Kuchkaev ,
  • Dmitry Yakhvarov ,
  • 康雄武
展开
  • a华南理工大学环境与能源学院新能源研究所,广东 广州 510006
    b阿尔布佐夫有机与物理化学研究所,俄罗斯联邦,喀山, 420088
    c喀山联邦大学亚历山大·巴特列罗夫化学研究所,俄罗斯联邦,喀山, 420008

收稿日期: 2023-04-07

  修回日期: 2023-05-15

  录用日期: 2023-06-07

  网络出版日期: 2023-06-14

Monodispersed Cu-TCPP/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst toward CO2 Reduction to C2 Products

  • Zi-Xuan Wan ,
  • Aidar Kuchkaev ,
  • Dmitry Yakhvarov ,
  • Xiong-Wu Kang
Expand
  • aNew Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
    bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan, 420088, Russian Federation
    cAlexander Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya Street 18, Kazan, 420008, Russian Federation
Dmitry Yakhvarov, E-mail address: yakhvar@iopc.ru
*Xiong-Wu Kang, Tel: (86-20)39381206, E-mail address: esxkang@scut.edu.cn;

Received date: 2023-04-07

  Revised date: 2023-05-15

  Accepted date: 2023-06-07

  Online published: 2023-06-14

摘要

高效电还原CO2(ECR)为有价值的多碳产物是解决CO2排放问题的有效解决方案。基于卟啉的金属有机框架(MOFs)具有多孔结构和有序的活性位点,有望提高ECR生成多碳产物的选择性。本文制备了由铜-四(4-羧基)卟啉(Cu-TCPP)和Cu2O组成的有机/无机杂化Cu-TCPP@Cu2O电催化剂,其中TCPP在调控形貌方面起着重要作用。ECR过程中原位形成的Cu与Cu-TCPP(Cu-TCPP@Cu)结合可以抑制析氢,富集CO中间体,促进C-C偶联生成C2产物。多孔碳(PC)负载的Cu-TCPP@Cu在PC上被还原为Cu纳米簇,同时对C2产物具有较高的ECR活性和选择性。催化剂在-1.0 V时(相对于可逆氢电极),C2产物法拉第效率为62.3%,部分电流密度为83.4 mA·cm-2,是纯Cu2O和TCPP的7.6倍和13.1倍。本论文研究了催化剂形貌和杂化结构如何提高ECR生C2产物的选择性,为高性能ECR催化剂的设计提供了新思路。

本文引用格式

万紫轩 , Aidar Kuchkaev , Dmitry Yakhvarov , 康雄武 . 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学, 2024 , 30(1) : 2303271 . DOI: 10.13208/j.electrochem.2303271

Abstract

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress hydrogen evolution, enrich CO intermediate and promote C-C coupling toward C2 products. The Cu-TCPP@Cu supported on porous carbon (PC) showed ultrafine Cu nanoclusters on PC, and displayed high ECR activity and selectivity toward C2 products, with a C2 faradaic efficiency of 62.3% at -1.0 V versus the reversible hydrogen electrode and a C2 partial current density of 83.4 mA·cm-2, which is 7.6 times and 13.1 times those of pure Cu2O and TCPP, respectively. The morphology and hybrid structure of the catalyst were studied to improve the selectivity of ECR to produce C2 products, which provides a new idea for the design of high-performance ECR catalyst.

参考文献

[1] Wang W, Shang L, Chang G L, Yan C Y, Shi R, Zhao Y X, Waterhouse G I N, Yang D J, Zhang T R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide[J]. Adv. Mater., 2019, 31(19): 1808276.
[2] Luo T, Liu K, Fu J, Chen S, Li H, Pan H, Liu M. Electric double layer structure in electrocatalytic carbon dioxide reduction[J]. AESR, 2022, 4(3): 2200148.
[3] Mu Z Y, Han N, Xu D, Tian B L, Wang F Y, Wang Y Q, Sun Y M, Liu C, Zhang P K, Wu X J, Li Y G, Ding M N. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations[J]. Nat. Commun., 2022, 13(1): 6911.
[4] Faunce T A, Lubitz W, Rutherford A W, MacFarlane D, Moore G F, Yang P, Nocera D G, Moore T A, Gregory D H, Fukuzumi S, Yoon K B, Armstrong F A, Wasielewski M R, Styring S. Energy and environment policy case for a global project on artificial photosynthesis[J]. Energy Environ. Sci., 2013, 6(3): 695-698.
[5] Masel R I, Liu Z, Yang H, Kaczur J J, Carrillo D, Ren S, Salvatore D, Berlinguette C P. An industrial perspective on catalysts for low-temperature CO2 electrolysis[J]. Nat. Nanotechnol., 2021, 16(2): 118-128.
[6] Zhou Y J, Ni G H, Wu K Z, Chen Q, Wang X Q, Zhu W W, He Z, Li H M, Fu J W, Liu M. Porous Zn Conformal coating on dendritic-like Ag with enhanced selectivity and stability for CO2electroreduction to CO[J]. Adv. Sustain. Syst., 2023, 7(1): 2200374.
[7] De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todorovi? P, Regier T, Kelley S O, Yang P, Sargent E H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nat. Catal., 2018, 1(2): 103-110.
[8] Pan B B, Fan J, Zhang J, Luo Y Q, Shen C, Wang C Q, Wang Y H, Li Y G. Close to 90% Single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly[J]. ACS Energy Lett., 2022, 7(12): 4224-4231.
[9] Wu Y S, Jiang Z, Lu X, Liang Y Y, Wang H L. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642.
[10] Wang Q, Liu K, Hu K, Cai C, Li H, Li H, Herran M, Lu Y R, Chan T S, Ma C, Fu J, Zhang S, Liang Y, Cortés E, Liu M. Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO[J]. Nat. Commun., 2022, 13(1): 6082.
[11] Zhao S L, Yang Y C, Tang Z Y. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts[J]. Angew. Chem. Int. Ed., 2022, 61(11): e202110186.
[12] Liu P X, Peng L W, He R N, Li L L, Qiao J L. A high-performance continuous-flow MEA reactor for electroreduction CO2 to formate[J]. J. Electrochem., 2022, 28(1): 2104231.
[13] Wang Y R, Yang R X, Chen Y, Gao G K, Wang Y J, Li S L, Lan Y Q. Chloroplast-like porous bismuth-based core-shell structure for high energy efficiency CO2electroreduction[J]. Sci. Bull., 2020, 65(19): 1635-1642.
[14] Tan D X, Cui C N, Shi J B, Luo Z X, Zhang B X, Tan X N, Han B X, Zheng L R, Zhang J, Zhang J L. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide[J]. Nano Res., 2019, 12(5): 1167-1172.
[15] Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocatalytic process of Co selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochim. Acta, 1994, 39(11): 1833-1839.
[16] Deng P L, Yang F, Wang Z T, Chen S H, Zhou Y Z, Zaman S, Xia B Y. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate[J]. Angew. Chem. In. Ed., 2020, 59(27): 10807-10813.
[17] Li Q, Fu J J, Zhu W L, Chen Z Z, Shen B, Wu L H, Xi Z, Wang T Y, Lu G, Zhu J J, Sun S H. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure[J]. J. Am. Chem. Soc., 2017, 139(12): 4290-4293.
[18] Gao S, Lin Y, Jiao X C, Sun Y F, Luo Q Q, Zhang W H, Li D Q, Yang J L, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71.
[19] Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angew. Chem. Int. Ed., 2017, 56(38): 11326-11353.
[20] Han S G, Ma D D, Zhu Q L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction[J]. Small Methods, 2021, 5(8): 2100102.
[21] Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q. Recent advances in porous polyoxometalate-based metal-organic framework materials[J]. Chem. Soc. Rev., 2014, 43(13): 4615-4632.
[22] Qin J S, Du D Y, Guan W, Bo X J, Li Y F, Guo L P, Su Z M, Wang Y Y, Lan Y Q, Zhou H C. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water[J]. J. Am. Chem. Soc., 2015, 137(22): 7169-7177.
[23] Peng C, Zhu X, Xu Z, Yan S, Chang L Y, Wang Z, Zhang J, Chen M, Sham T K, Li Y, Zheng G. Lithium vacancy-tuned [CuO4] sites for selective CO2 electroreduction to C2+ products[J]. Small, 2022, 18(8): 2106433.
[24] Guo Q, Fu J L, Zhang C Y, Cai C Y, Wang C, Zhou L H, Xu R B, Wang M Y. Preparation of CoO/RGO@Ni foam electrode and its electrocatalytic reduction of CO2[J]. J. Electrochem., 2021, 27(4): 449-455.
[25] Zhu C, Chen W, Song Y F, Dong X, Li G H, Wei W, Sun Y H. Effect of reaction conditions on Cu-catalyzed CO2 electroreduction[J]. J. Electrochem., 2020, 26(6): 797-807.
[26] Liang Z B, Qu C, Guo W H, Zou R Q, Xu Q. Pristine metal-organic frameworks and their composites for energy storage and conversion[J]. Adv. Mater., 2018, 30(37): 1702891.
[27] Kornienko N, Zhao Y, Kley C S, Zhu C, Kim D, Lin S, Chang C J, Yaghi O M, Yang P. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. J. Am. Chem. Soc., 2015, 137(44): 14129-14135.
[28] Savéant J M. Molecular catalysis of electrochemical reactions. Mechanistic aspects[J]. Chem. Rev., 2008, 108(7): 2348-2378.
[29] Chi S Y, Chen Q, Zhao S S, Si D H, Wu Q J, Huang Y B, Cao R. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide[J]. J. Mater. Chem. A, 2022, 10(9): 4653-4659.
[30] Wannakao S A O, Jumpathong W, Kongpatpanich K A O. Tailoring metalloporphyrin frameworks for an efficient carbon dioxide electroreduction: Selectively stabilizing key intermediates with H-bonding pockets[J]. Inorg. Chem., 2017, 56(12): 7200-7209.
[31] Wang C, Zhu C Y, Zhang M, Geng Y, Li Y G, Su Z M. An intriguing window opened by a metallic two-dimensional lindqvist-cobaltporphyrin organic framework as an electrochemical catalyst for the CO2 reduction reaction[J]. J. Mater. Chem. A, 2020, 8(29): 14807-14814.
[32] Wang Y R, Huang Q, He C T, Chen Y, Liu J, Shen F C, Lan Y Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2[J]. Nat. Commun., 2018, 9(1): 4466.
[33] Hod I, Sampson M D, Deria P, Kubiak C P, Farha O K, Hupp J T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2[J]. ACS Catal., 2015, 5(11): 6302-6309.
[34] Titi H M, Patra R, Goldberg I. Exploring supramolecular self-assembly of tetraarylporphyrins by halogen bonding: Crystal engineering with diversely functionalized six-coordinate tin(L)2-porphyrin tectons[J]. Chem.-Eur. J., 2013, 19(44): 14941-14949.
[35] Li J W, Zeng H L, Dong X, Ding Y M, Hu S P, Zhang R H, Dai Y Z, Cui P X, Xiao Z, Zhao D H, Zhou L J, Zheng T T, Xiao J P, Zeng J, Xia C. Selective CO2 electrolysis to CO using isolated antimony alloyed copper[J]. Nat. Commun., 2023, 14(1): 340.
[36] He T, Chen S M, Ni B, Gong Y, Wu Z, Song L, Gu L, Hu W P, Wang X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms[J]. Angew. Chem. Int. Ed., 2018, 57(13): 3493-3498.
[37] Jin S, Son H J, Farha O K, Wiederrecht G P, Hupp J T. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting[J]. J. Am. Chem. Soc., 2013, 135(3): 955-958.
[38] Modak A, Nandi M, Mondal J, Bhaumik A. Porphyrin based porous organic polymers: Novel synthetic strategy and exceptionally high CO2 adsorption capacity[J]. Chem. Commun., 2012, 48(2): 248-250.
[39] Liu C X, Zhang M L, Li J W, Xue W Q, Zheng T T, Xia C, Zeng J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling[J]. Angew. Chem. Int. Ed., 2022, 61(3): e202113498.
[40] Teng X, Niu Y L, Gong S Q, Liu X, Chen Z F. Selective CO2 reduction to formate on heterostructured Sn/SnO2 nanoparticles promoted by carbon layer networks[J]. J. Electrochem., 2022, 28(2): 2108441.
[41] Gong L, Gao Y, Wang Y H, Chen B T, Yu B Q, Liu W B, Han B, Lin C X, Bian Y Z, Qi D D, Jiang J Z. Efficient electrocatalytic carbon dioxide reduction with tetraphenylethylene- and porphyrin-based covalent organic frameworks[J]. Catal. Sci. Technol., 2022, 12(21): 6566-6571.
[42] Derrick J S, Loipersberger M, Nistanaki S K, Rothweiler A V, Head-Gordon M, Nichols E M, Chang C J. Templating bicarbonate in the second coordination sphere enhances electrochemical CO2 reduction catalyzed by iron porphyrins[J]. J. Am. Chem. Soc., 2022, 144(26): 11656-11663.
[43] Yu P E, Lv X M, Wang Q H, Huang H L, Weng W J, Peng C, Zhang L J, Zheng G F. Promoting electrocatalytic CO2reduction to CH4 by copper porphyrin with donor-acceptor structures[J]. Small, 2022, 19(4): 2205730.
[44] Zhang X, Wang Y, Gu M, Wang M Y, Zhang Z S, Pan W Y, Jiang Z, Zheng H Z, Lucero M, Wang H L, Sterbinsky G E, Ma Q, Wang Y G, Feng Z X, Li J, Dai H J, Liang Y Y. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nat. Energy, 2020, 5(9): 684-692.
[45] Li B, Wang X Y, Chen L, Zhou Y L, Dang W T, Chang J, Wu C T. Ultrathin Cu-TCPP MOF nanosheets: A new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers[J]. Theranostics, 2018, 8(15): 4086-4096.
[46] Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. J. Am. Chem. Soc., 2015, 137(44): 14023-14026.
[47] Zhao M T, Wang Y X, Ma Q L, Huang Y, Zhang X, Ping J F, Zhang Z C, Lu Q P, Yu Y F, Xu H, Zhao Y L, Zhang H. Ultrathin 2D metal-organic framework nanosheets[J]. Adv. Mater., 2015, 27(45): 7372-7378.
[48] Li J, Song S, Meng J S, Tan L, Liu X M, Zheng Y F, Li Z Y, Yeung K W K, Cui Z D, Liang Y Q, Zhu S L, Zhang X C, Wu S L. 2D MOF periodontitis photodynamic ion therapy[J]. J. Am. Chem. Soc., 2021, 143(37): 15427-15439.
[49] La D D, Thi H P N, Kim Y S, Rananaware A, Bhosale S V. Facile fabrication of Cu(Ⅱ)-porphyrin MOF thin films from tetrakis(4-carboxyphenyl)porphyrin and Cu(OH)2 nanoneedle array[J]. Appl. Surf. Sci., 2017, 424: 145-150.
[50] Zhao S Y, Li S, Zhao Z C, Su Y P, Long Y K, Zheng Z Q, Cui D L, Liu Y, Wang C F, Zhang X J, Zhang Z T. Microwave-assisted hydrothermal assembly of 2d copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water[J]. Environ. Sci. Pollut. Res., 2020, 27(31): 39186-39197.
[51] Kooti M. Fabrication of nanosized cuprous oxide using Fehling's solution[J]. Transaction F: Nanotechnology, 2010, 17: 73.
[52] Karapinar D, Zitolo A, Huan T N, Zanna S, Taverna D, Galv?o Tizei L H, Giaume D, Marcus P, Mougel V, Fontecave M. Carbon-nanotube-supported copper polyphthalocyanine for efficient and selective electrocatalytic CO2 reduction to CO[J]. ChemSusChem, 2020, 13(1): 173-179.
[53] Xu T Y, Wei S T, Zhang X L, Zhang D T, Xu Y C, Cui X Q. Sulfur-doped Cu3p∣S electrocatalyst for hydrogen evolution reaction[J]. Mater. Res. Express, 2019, 6(7): 075501.
[54] Zhang J, Mao X N, Pan B B, Xu J, Ding X, Han N, Wang L, Wang Y H, Li Y G. Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO2 reduction to ethylene in membrane electrode assemblies[J]. Nano Res., 2022, 16(4): 4685-4690.
[55] Mette G, Sutter D, Gurdal Y, Schnidrig S, Probst B, Iannuzzi M, Hutter J, Alberto R, Osterwalder J. From porphyrins to pyrphyrins: Adsorption study and metalation of a molecular catalyst on Au(111)[J]. Nanoscale, 2016, 8: 7958-7968.
[56] Mei B B, Liu C, Li J, Gu S Q, Du X L, Lu S Y, Song F, Xu W L, Jiang Z. Operando herfd-xanes and surface sensitive Δμ analyses identify the structural evolution of copper(Ⅱ) phthalocyanine for electroreduction of CO2[J]. J. Energy Chem., 2022, 64: 1-7.
[57] Tang J K, Zhu C Y, Jiang T W, Wei L, Wang H, Yu K, Yang C L, Zhang Y B, Chen C, Li Z T, Zhang D W, Zhang L M. Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions[J]. J. Mater. Chem. A, 2020, 8(36): 18677-18686.
[58] Wang W, Deng C Y, Xie S J, Li Y F, Zhang W Y, Sheng H, Chen C C, Zhao J C. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(Ⅰ)/copper(Ⅱ)[J]. J. Am. Chem. Soc., 2021, 143(7): 2984-2993.
[59] Sang J Q, Wei P F, Liu T F, Lv H F, Ni X M, Gao D F, Zhang J W, Li H F, Zang Y P, Yang F, Liu Z, Wang G X, Bao X H. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products[J]. Angew. Chem. Int. Ed., 2022, 61(5): e202114238.
[60] Lin Z C, Jiang Z, Yuan Y B, Li H, Wang H X, Tang Y R, Liu C C, Liang Y Y. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction[J]. Chinese Journal of Catalysis, 2022, 43(1): 104-109.
[61] Siltamaki D, Chen S, Rahmati F, Lipkowski J, Cheng A C. Synthesis and electrochemical study of CuAu nanodendrites for CO2 reduction[J]. J. Electrochem., 2021, 27(3): 278-290.
文章导航

/