欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

电极/碱性聚电解质界面的微分电容曲线和零电荷电位测定

  • 刘晨希 ,
  • 邹泽萍 ,
  • 胡梅雪 ,
  • 丁宇 ,
  • 谷宇 ,
  • 刘帅 ,
  • 南文静 ,
  • 马溢昌 ,
  • 陈招斌 ,
  • 詹东平 ,
  • 张秋根 ,
  • 庄林 ,
  • 颜佳伟 ,
  • 毛秉伟
展开
  • a厦门大学化学化工学院,福建 厦门 361005
    b武汉大学化学与分子科学学院,湖北 武汉 430072

收稿日期: 2023-03-15

  修回日期: 2023-04-25

  录用日期: 2023-06-02

  网络出版日期: 2023-06-08

The Determination of PZC and differential Capacitance Curve of Platinum-Alkaline Polymer Electrolyte Interfaces

  • Liu Chen-Xi ,
  • Zou Ze-Ping ,
  • Hu Mei-Xue ,
  • Ding Yu ,
  • Gu Yu ,
  • Liu Shuai ,
  • Nan Wen-Jing ,
  • Ma Yi-Chang ,
  • Chen Zhao-Bin ,
  • Zhan Dong-Ping ,
  • Zhang Qiu-Gen ,
  • Zhuang Lin ,
  • Yan Jia-Wei ,
  • Mao Bing-Wei
Expand
  • aCollege of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
    bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
First author contact:#These authors contributed equally to this work.
Bing-Wei Mao, Tel: (86-592)2186862, E-mail: bwmao@xmu.edu.cn
Jia-Wei Yan, Tel: (86-592)2186862, E-mail: jwyan@xmu.edu.cn;
Lin Zhuang, Tel: (86-27)68788793, E-mail: lzhuang@whu.edu.cn;
*Qiu-Gen Zhang, Tel: (86-592)2188072, E-mail: qgzhang@xmu.edu.cn;
Bing-Wei Mao, Tel: (86-592)2186862, E-mail: bwmao@xmu.edu.cn
Jia-Wei Yan, Tel: (86-592)2186862, E-mail: jwyan@xmu.edu.cn;
Lin Zhuang, Tel: (86-27)68788793, E-mail: lzhuang@whu.edu.cn;
*Qiu-Gen Zhang, Tel: (86-592)2188072, E-mail: qgzhang@xmu.edu.cn;
Bing-Wei Mao, Tel: (86-592)2186862, E-mail: bwmao@xmu.edu.cn
Jia-Wei Yan, Tel: (86-592)2186862, E-mail: jwyan@xmu.edu.cn;
Lin Zhuang, Tel: (86-27)68788793, E-mail: lzhuang@whu.edu.cn;
*Qiu-Gen Zhang, Tel: (86-592)2188072, E-mail: qgzhang@xmu.edu.cn;

Received date: 2023-03-15

  Revised date: 2023-04-25

  Accepted date: 2023-06-02

  Online published: 2023-06-08

摘要

碱性聚合物电解质作为现代碱性氢氧燃料电池的核心组成部分,其单离子导体的特性使得“电极/碱性聚电解质”界面的性质与“电极/溶液”界面有所不同。本文使用微电极,运用循环伏安、电化学交流阻抗以及浸入法等方法,测定了电极/碱性聚电解质界面的微分电容曲线和零电荷电位。该界面的微分电容曲线呈“U”状,且存在局域极小值,该极小值所对应的电位与浸入法测得的零电荷电位数值一致。单离子导体的特性使得“电极/碱性聚电解质”界面在零电荷电位两侧表现出不同的电化学极化行为。

本文引用格式

刘晨希 , 邹泽萍 , 胡梅雪 , 丁宇 , 谷宇 , 刘帅 , 南文静 , 马溢昌 , 陈招斌 , 詹东平 , 张秋根 , 庄林 , 颜佳伟 , 毛秉伟 . 电极/碱性聚电解质界面的微分电容曲线和零电荷电位测定[J]. 电化学, 2024 , 30(3) : 2303151 . DOI: 10.13208/j.electrochem.2303151

Abstract

Alkaline polymer electrolyte (APE) is the core component of modern alkaline hydrogen and oxygen fuel cells, and its single ion conductor nature makes the "electrode/APE" interfaces different from the conventional "electrode/solution" interfaces in terms of ion distribution, electrical double layer structure and polarization behavior. Due to the complexity of the APE and the associated solid-solid interfaces, fundamental investigations are challenging and deeper understanding of the structures and properties of such interfaces is in the infant stage. In this work, we aim to investigate the double layer structure from the aspects of differential capacitance curve and potential of zero charge (PZC) at the electrode/QAPPT (quaternary ammonia poly(Nmethyl-piperidine-co-p-terphenyl) interface. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and microelectrode-based immersion techniques were employed. The differential capacitance curves of Pt/QAPPT interfaces exhibited an asymmetric U-shaped feature with a minimum at the potential which is consistent with the PZTC measured by the immersion method. The capacitance raised less quickly on the negative than the positive sides of the PZTC. These results reflect the characteristics of the single ion conductor and role of alkaline polyelectrolytes in modifying the double layer structure of the electrode/APE interfaces.

参考文献

[1] Wang Y J, Qiao J L, Baker R, Zhang J J. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chem. Soc. Rev., 2013, 42(13): 5768-5787.
[2] Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, Mustain W E, Nijmeijer K, Scott K, Xu T, Zhuang L. Anion-exchange membranes in electrochemical energy systems[J]. Energy Environ. Sci., 2014, 7(10): 3135-3191.
[3] Kusoglu A, Weber A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chem. Rev., 2017, 117(3): 987-1104.
[4] Ramaswamy N, Mukerjee S. Alkaline anion-exchange membrane fuel cells: Challenges in electrocatalysis and interfacial charge transfer[J]. Chem. Rev., 2019, 119(23): 11945-11979.
[5] Wang L, Bellini M, Miller H A, Varcoe J R. A high conductivity ultrathin anion-exchange membrane with 500+ H alkali stability for use in alkaline membrane fuel cells that can achieve 2 W·cm-2 at 80 °C[J]. J. Mater. Chem. A, 2018, 6(31): 15404-15412.
[6] Du X M, Zhang H Y, Yuan Y J, Wang Z, Xu J M. Synthesizing spindle-shaped anion exchange membranes to improve conductivity and stability[J]. Int. J. Hydrog. Energy, 2020, 45(20): 11814-11823.
[7] Frumkin A N, Petrii O A. Potentials of zero total and zero free charge of platinum group metals[J]. Electrochim. Acta, 1975, 20(5): 347-359.
[8] Kolb D M. Book review: Comprehensive treatise of electrochemistry. Vol. 1. The double layer. Edited by J. O'm. Bockris, B. E. Conway and E. Yeager[J]. Angew. Chem. Int. Ed, 1981, 20(9): 817-818.
[9] Zha Q X. The introduction of electrode process kinetics[M]. 2nd ed. Beijing: Science Press, 2002.
[10] Attard G A, Ahmadi A. Anion—surface interactions Part 3. N2O reduction as a chemical probe of the local potential of zero total charge[J]. J. Electroanal. Chem, 1995, 389(1): 175-190.
[11] Cuesta A. Measurement of the surface charge density of CO-saturated Pt(111) electrodes as a function of potential: The potential of zero charge of Pt(111)[J]. Surf. Sci., 2004, 572(1): 11-22.
[12] Silva C D, Cabello G, Christinelli W A, Pereira E C, Cuesta A. Simultaneous time-resolved ATR-SEIRAS and CO-charge displacement experiments: The dynamics of CO adsorption on polycrystalline Pt[J]. J. Electroanal. Chem, 2017, 800: 25-31.
[13] Iwasita T, Xia X. Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge[J]. J. Electroanal. Chem, 1996, 411(1): 95-102.
[14] Czajkowski J M, Blaszczyk T, Kazmierczak D. Automatic-apparatus for precise measuring and recording of PZC value of liquid electrodes and its application[J]. Electrochim. Acta, 1984, 29(4): 439-443.
[15] Hamm UW, Kramer D, Zhai R S, Kolb D M. The PZC of Au(111) and Pt(111) in a perchloric acid solution: An ex situ approach to the immersion technique[J]. J. Electroanal. Chem, 1996, 414(1): 85-89.
[16] Gnahm M, Pajkossy T, Kolb D M. The interface between Au(111) and an ionic liquid[J]. Electrochim. Acta, 2010, 55(21): 6212-6217.
[17] Gnahm M, Muller C, Repanszki R, Pajkossy T, Kolb D M. The interface between Au(100) and 1-butyl-3-methyl-imidazolium-hexafluorophosphate[J]. Phys. Chem. Chem. Phys., 2011, 13(24): 11627-11633.
[18] Müller C, Vesztergom S, Pajkossy T, Jacob T. Immersion measurements of potential of zero total charge ( Pztc ) of Au(100) in an ionic liquid[J]. Electrochim. Acta, 2016, 188: 512-515.
[19] Ojha K, Arulmozhi N, Aranzales D, Koper M T M. Double layer at the Pt(111)-aqueous electrolyte interface: Potential of zero charge and anomalous gouy-chapman screening[J]. Angew. Chem. Int. Ed., 2020, 59(2): 711-715.
[20] Ojha K, Doblhoff-Dier K, Koper M T M. Double-layer structure of the Pt(111)-aqueous electrolyte interface[J]. Proc. Natl. Acad. Sci. U.S.A., 2022, 119(3): e2116016119.
[21] Peng H Q, Li Q H, Hu M X, Xiao L, Lu J T, Zhuang L. Alkaline polymer electrolyte fuel cells stably working at 80?°C[J]. J. Power Sources, 2018, 390: 165-167.
[22] Ma Z, Lin J Y, Nan W J, Han L H, Zhan D P. Ultramicroelectrode experiments: Principles, fabrications and voltmmetric behaviors[J]. J. Electrochem., 2022, DOI: 1006-3471(2022)00-0000-00.
[23] Ramaswamy N, Mukerjee S. Influence of inner-and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media[J]. J. Phys. Chem. C, 2011, 115(36): 18015-18026.
[24] Liao L W, Li M F, Kang J, Chen D, Chen Y X, Ye S. Electrode reaction induced pH change at the Pt electrode/electrolyte interface and its impact on electrode processes[J]. J. Electroanal. Chem., 2013, 688: 207-215.
[25] Podlovchenko B I, Kolyadko E A. Variations in the charge and open-circuit potential of a platinum electrode during adsorption of iodine and iodide ions[J]. Russ. J. Electrochem., 2000, 36(12): 1268-1274.
[26] Bagotzky V S, Vassilyev Y B, Weber J, Pirtskhalava J N. Adsorption of anions on smooth platinum electrodes[J]. J. Electroanal. Chem., 1970, 27(1): 31-46.
[27] Brug G J, van den Eeden A L G, Sluyters-Rehbach M, Sluyters J H. The analysis of electrode impedances complicated by the presence of a constant phase element[J]. J. Electroanal. Chem., 1984, 176(1): 275-295.
[28] Pajkossy T, Kolb D M. On the origin of the double layer capacitance maximum of Pt(111) single crystal electrodes[J]. Electrochem. Commun., 2003, 5(4): 283-285.
[29] Schuler T, Chowdhury A, Freiberg A T, Sneed B, Spingler F B, Tucker M C, More K L, Radke C J, Weber A Z. Fuel-cell catalyst-layer resistance via hydrogen limiting-current measurements[J]. J. Electrochem. Soc., 2019, 166(7): F3020-F3031.
[30] Srebnik S, Pusara S, Dekel D R. Effect of carbonate anions on quaternary ammonium-hydroxide interaction[J]. J. Phys. Chem. C, 2019, 123(26): 15956-15962.
[31] Hanawa H, Kunimatsu K, Watanabe M, Uchida H. In Situ ATR-FTIR analysis of the structure of nafion-Pt/C and nafion-Pt3Co/C interfaces in fuel cell[J]. J. Phys. Chem. C, 2012, 116(40): 21401-21406.
[32] Ahmed M, Morgan D, Attard G A, Wright E, Thompsett D, Sharman J. Unprecedented structural sensitivity toward average terrace width: Nafion adsorption at Pt{Hkl} electrodes[J]. J. Phys. Chem. C, 2011, 115(34): 17020-17027.
[33] Park E J, Arges C G, Xu H, Kim Y S. Membrane strategies for water electrolysis[J]. ACS Energy Lett., 2022, 7(10): 3447-3457.
[34] Rizo R, Sitta E, Herrero E, Climent V, Feliu J M. Towards the understanding of the interfacial pH scale at Pt(111) electrodes[J]. Electrochim. Acta, 2015, 162: 138-145.
[35] Mello G A B, Briega-Martos V, Climent V, Feliu J M. Bromide adsorption on Pt(111) over a wide range of pH: Cyclic voltammetry and CO displacement experiments[J]. J. Phys. Chem. C, 2018, 122(32): 18562-18569.
[36] Xu P, von Rueden A D, Schimmenti R, Mavrikakis M, Suntivich J. Optical Method for Quantifying the potential of zero charge at the platinum-water electrochemical interface[J]. Nat. Mater., 2023, 22(4): 503-510.
文章导航

/