通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移
收稿日期: 2022-12-10
修回日期: 2022-12-28
录用日期: 2023-04-13
网络出版日期: 2023-04-23
Scanning Photoelectrochemical Microscopic Study in Photoinduced Electron Transfer of Supramolecular Sensitizers-TiO2 Thin Films Systems
Received date: 2022-12-10
Revised date: 2022-12-28
Accepted date: 2023-04-13
Online published: 2023-04-23
在基于TiO2的光阳极上枝接电荷转移通道仍然是太阳能到化学转换技术的一个迫切瓶颈。尽管进行了大量的尝试,但TiO2作为有前途的光阳极材料仍然受到电荷传输动力学迟缓的影响。因此,一种组装策略涉及将金属卟啉基光敏剂分子(MP)轴向配位嫁接到表面改性的TiO2纳米棒(TiO2 NRs)光阳极上,形成复合MP/TiO2 NRs光电极。正如预期的那样,与单独的TiO2 NR和MPA/TiO2 NRs光电极相比,所得到的独特的MPB/TiO2 NRs光电极具有明显提高的光电流密度。采用扫描光电化学显微镜(SPECM)和强度调制光电流光谱(IMPS)系统地评估了MP/TiO2 NRs光电极的连续光激发电子转移(PET)动力学信息。通过数据拟合发现,在光照条件下,MPB/TiO2 NRs的光电子转移速率(keff)常数比纯TiO2 NRs高2.6倍左右。MPB/TiO2 NRs的高动力学常数是由于D-A结构的共轭分子MPB可以有效地加速分子内电子转移,以及促进电子在新型电荷转移通道中参与I3-到I-的还原反应。本研究展示的结果有望为研究人工光合作用电荷转移过程的机制和构建高效的光电极提供一些启发。
张生雅 , 姚敏 , 王泽 , 刘天娇 , 张蓉芳 , 叶慧琴 , 冯彦俊 , 卢小泉 . 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学, 2023 , 29(6) : 2218005 . DOI: 10.13208/j.electrochem.2218005
Crafting charge transfer channels at titanium dioxide (TiO2) based photoanodes remain a pressing bottleneck in solar-to-chemical conversion technology. Despite the tremendous attempts, TiO2 as the promising photoanode material still suffers from sluggish charge transport kinetics. Herein, we propose an assembly strategy that involves the axial coordination grafting metalloporphyrin-based photosensitizer molecules (MP) onto the surface-modified TiO2 nanorods (NRs) photoanode, forming the composite MP/TiO2 NRs photoelectrode. As expected, the resulted unique MPB/TiO2 NRs photoelectrode displays significantly improved photocurrent density as compared to TiO2 NRs alone and MPA/TiO2 NRs photoelectrode. Scanning photoelectrochemical microscopy (SPECM) and intensity modulated photocurrent spectroscopy (IMPS) were employed to systematically evaluate the continuous photoinduced electron transfer (PET) dynamics for MP/TiO2 NRs photoelectrode. According to the data fitting, it is found that the photoelectron transfer rate (keff) constant for the MPB/TiO2 NRs is about 2.6 times higher than that for the pure TiO2 NRs under light irradiation. The high kinetic constant for the MPB/TiO2 NRs was ascribed to that the conjugated molecules MPB of D-A structure can effectively accelerate intramolecular electrons transfer as well as promote electrons taking part in the reduction reaction of I3- to I- in the novel charge transfer channel. The results demonstrated in this study are expected to shed some light on investigating the mechanism in the charge transfer process of artificial photosynthesis and constructing efficient photoelectrodes.
[1] | Cao H Y, Wang T T, Li J X, Wu J B, Du P W. A molecular cobaloxime cocatalyst and ultrathin FeOOH nanolayers Co-modified BiVO4 photoanode for efficient photoelectrochemical water oxidation[J]. J. Energy Chem., 2022, 69: 497-505. |
[2] | Gao L L, Li F, Hu H G, Long X F, Xu N, Hu Y P, Wei S Q, Wang C L, Ma J T, Jin J. Dual modification of a BiVO4 photoanode for enhanced photoelectrochemical performance[J]. ChemSusChem., 2018, 11(15): 2502-2509. |
[3] | Zhang B Y, Liu K W, Xiang Y, Wang J M, Lin W R, Guo M, Ma G J. Facet-oriented assembly of Mo:BiVO4 and Rh:SrTiO3 particles: Integration of P-N conjugated photo-electrochemical system in a particle applied to photocatalytic overall water splitting[J]. ACS Catal., 2022, 12(4): 2415-2425. |
[4] | Mitsui M, Nakagome Y, Niihori Y, Inoue S, Fujiwara Y, Kobayashi K. Starburst-shaped D-π-A chromophores possessing a hexaethynylbenzene core for dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces., 2021, 13(30): 35739-35749. |
[5] | Chang P H, Sil M C, Reddy K S K, Lin C H, Chen C M. Polyimide-based covalent organic framework as a photocurrent enhancer for efficient dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces., 2022, 14(22): 25466-25477. |
[6] | Li F S, Yang H, Zhuo Q M, Zhou D H, Wu X J, Zhang P L, Yao Z Y, Sun L C. A cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting[J]. Angew. Chem. Int. Ed., 2021, 60(4): 1976-1985. |
[7] | Lu Y, Yang Y L, Fan X Y, Li Y Q, Zhou D H, Cai B, Wang L Y, Fan K, Zhang K. Boosting charge transport in BiVO4 photoanode for solar water oxidation[J]. Adv. Mater., 2022, 34(8): e2108178. |
[8] | Sahu T K, Alam S, Bhowmick S, Mohanta M K, Qureshi M. Phosphorus nitride nano-dots as a versatile and metal-free support for efficient photoelectrochemical water oxidation[J]. Chem. Commun., 2021, 57(50): 6157-6160. |
[9] | Song Y R, Zhang X M, Zhang Y X, Zhai P L, Li Z W, Jin D F, Cao J Q, Wang C, Zhang B, Gao J F, Sun L C, Hou J G. Engineering MoOx/Mxene hole transfer layers for unexpected boosting photoelectrochemical water oxidation[J]. Angew. Chem. Int. Ed., 2022, 61(16): e202200946. |
[10] | Tateno H, Chen S Y, Miseki Y, Nakajima T, Mochizuki T, Sayama K. Photoelectrochemical oxidation of glycerol to dihydroxyacetone over an acid-resistant Ta:BiVO4 photoanode[J]. ACS Sustain. Chem. Eng., 2022, 10(23): 7586-7594. |
[11] | Abdelkarim O, Selopal G S, Suresh K, Navarro-Pardo F, Kumar P, Ghuman K K, Yurtsever A, Bassioni G, Wang Z M, Rosei F. Role of surface engineering of hybrid structure for high performance quantum dots based photoelectrochemical hydrogen generation[J]. Chem. Eng. J., 2022, 429: 132425. |
[12] | Yu Z R, Guo H, Sun Z L, Li Y, Liu Y H, Yang W G, Zhu M Y, Jin H M, Li Y, Feng L Y, Li S, Prucnal S, Li W X. U7Co 3d impurity energy level mediated photogenerated carriers transfer in Bi2S3/ZnS:Co/TiO2 photoanode[J]. Chem. Eng. J., 2022, 433: 134458. |
[13] | Shen Z, Song J, Yung B C, Zhou Z, Wu A, Chen X. Cancer therapy: Emerging strategies of cancer therapy based on ferroptosis[J]. Adv. Mater., 2018, 30(12): 1870084. |
[14] | Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. J. Am. Chem. Soc., 2009, 131(11): 3875-3877. |
[15] | Zhang G H, Chen J H, Yan H G, Su B, He X, Ran M. Effects of artificial aging on microstructure and mechanical properties of the Mg-4.5Zn-4.5Sn-2Al alloy[J]. J. Alloys Compd., 2014, 592: 250-257. |
[16] | Park J, Lee T H, Kim C, Lee S A, Choi M J, Kim H, Yang J W, Lim J, Jang H W. Hydrothermally obtained type-Ⅱ heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting[J]. Appl. Catal. B Environ., 2021, 295: 120276. |
[17] | Wang S B, Liu P J, Meng C Z, Wang Y D, Zhang L, Pan L, Yin Z, Tang N, Zou J J. Boosting photoelectrochemical water splitting by Au@Pt modified ZnO/Cds with synergy of Au-S bonds and surface plasmon resonance[J]. J. Catal., 2022, 408: 196-205. |
[18] | Zhang M, Li F Y, Benetti D, Nechache R, Wei Q, Qi X W, Rosei F. Ferroelectric polarization-enhanced charge separation in quantum dots sensitized semiconductor hybrid for photoelectrochemical hydrogen production[J]. Nano Energy, 2021, 81: 105626. |
[19] | Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev., 2009, 38(1): 253-278. |
[20] | Ding C M, Shi J Y, Wang Z L, Li C. Correction to photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces[J]. ACS Catal., 2017, 7(3): 1706-1706. |
[21] | Feng Y C, Wang X, Wang Y Q, Yan H J, Wang D. In situ characterization of electrode structure and catalytic processes in the electrocatalytic oxygen reduction reaction[J]. J. Electrochem., 2022, 28(3): 2108531. |
[22] | Li Z L, Fang H, Chen Z P, Zou W X, Zhao C X, Yang X F. Regulating donor-acceptor interactions in triazine-based conjugated polymers for boosted photocatalytic hydrogen production[J]. Appl. Catal. B: Environ., 2022, 312: 121374. |
[23] | Han J, Li N J, Chen D Y, Xu Q F, Lu J M. Boosting photocatalytic activity for porphyrin-based D-a conjugated polymers via dual metallic sites regulation[J]. Appl. Catal. B: Environ., 2022, 317: 121724. |
[24] | Zou R Q, Sakurai H, Xu Q. Preparation, adsorption properties, and catalytic activity of 3d porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions[J]. Angew. Chem. Int. Ed., 2006, 45: 2542-2546. |
[25] | Lu F T, Zhang J, Zhou Y Z, Zhao Y M, Zhang B, Feng Y Q. Novel D-π-A porphyrin dyes with different alkoxy chains for use in dye-sensitized solar cells[J]. Dyes and Pigments., 2016, 125: 116-123. |
[26] | Li S Z, Zhang S Y, Mei S, Kong X F, Yang M, Wu W J, Zhang S H, Tan H J. A novel porphyrin dye with phenoxazine as donor unit for efficient dye-sensitized solar cells[J]. Dyes and Pigments., 2021, 190: 109308. |
[27] | Zhou P J, Liang J Y, Lin B B, An Z W, Chen R, Chen X B, An Q, Chen P. Effect of the spatial configuration of donors on the photovoltaic performance of double D-π-A organic dyes[J]. ACS Appl. Mater. Interfaces., 2021, 13(34): 40648-40655. |
[28] | Chen Y Y, Tang Y Y, Zou J Z, Zeng K W, Baryshnikov G, Li C J, Xie Y S. Fluorenyl indoline as an efficient electron donor for concerted companion dyes: Enhanced light-harvesting and photocurrent[J]. ACS Appl. Mater. Interfaces., 2021, 13(42): 49828-49839. |
[29] | Grobelny A, Shen Z, Eickemeyer F T, Antariksa N F, Zapotoczny S, Zakeeruddin S M, Gratzel M. Molecularly tailored photosensitizer with an efficiency of 13.2% for dye-sensitized solar cells[J]. Adv. Mater., 2022: e2207785. |
[30] | Ji J M, Lee H J, Zhou H, Eom Y K, Kim C H, Kim H K. Influence of the Pi-bridge-fused ring and acceptor unit extension in D-π-A structured organic dyes for highly efficient dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces., 2022, 14(47): 52745-52757. |
[31] | Lv S X, Wu Y C, Cai K M, He H, Li Y J, Min L, Chen X S, Cheng J J, Yin L C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions[J]. J. Am. Chem. Soc., 2018, 140(4): 1235-1238. |
[32] | Yen Y S, Chou H H, Chen Y C, Hsu C Y, Lin J T. Recent developments in molecule-based organic materials for dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(18): 8734-8747. |
[33] | Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F. Cover picture: Supersensitive detection of explosives by silicon nanowire arrays[J]. Angew. Chem. Int. Ed., 2010. 49(38): 6685. |
[34] | Hong S H, Wang Y F, Pan T Y, Chang C W, Kuo H H, Kuo M Y, Diau W G, Lin C Y, Wang C L, Lan C M. Enveloping porphyrins for efficient dye-sensitized solar cells[J]. Energy Environ. Sci., 2012, 5: 6933-6940. |
[35] | Li Y X, Wang G Y, Feng X X, Jia Q F, Li Y Y, Liu J L, Cao J, Liu J C. Double-layer novel zinc porphyrin based on axial coordination self-assembly for dye-sensitized solar cells[J]. J. Mol. Struct. 2021, 1242: 130819. |
[36] | Bassil B S, Dickman M H, Romer I, von der Kammer B, Kortz U. The tungstogermanate [Ce20Ge10W100O376(OH)4(H2O)30]56-: A polyoxometalate containing 20 cerium(iii) atoms[J]. Angew. Chem. Int. Ed., 2007, 46(32): 6192-6195. |
[37] | Li F, Wang Z Y, Stein A. Cover picture: Shaping mesoporous silica nanoparticles by disassembly of hierarchically porous structures[J]. Angew. Chem. Int. Ed., 2007, 46(11): 1749-1749. |
[38] | Ragoussi M E, Cid J J, Yum J H, de la Torre G, Di Censo D, Gr?tzel M, Torres T. Carboxyethynyl anchoring ligands: A means to improving the efficiency of phthalocyanine-sensitized solar cells[J]. Angew. Chem. Int. Ed., 2012, 124(18): 4451-4454. |
[39] | Sakamoto K, Yoshino S, Takemoto M, Furuya N. Syntheses of near infrared absorbed phthalocyanines to utilize photosensitizers[J] J. Porphyr. Phthalocyanines,. 2013, 17: 605-627. |
[40] | Beale A M, Jacques S, Gibson E K, Michiel M. Progress towards five dimensional diffraction imaging of functional materials under process conditions[J]. Coord. Chem. Rev., 2014, 277-278: 208-223. |
[41] | Retsek J L, Drain C M, Kirmaier C, Nurco D J, Medforth C J, Smith K M, Sazanovich I V, Chirvony V S, Fajer J, Holten D. Photoinduced axial ligation and deligation dynamics of nonplanar nickel dodecaarylporphyrins[J]. J. Am. Chem. Soc., 2003, 125(32): 9787. |
[42] | Zheng X L, Dinh C T, de Arquer F P, Zhang B, Liu M, Voznyy O, Li Y Y, Knight G, Hoogland S, Lu Z H, Du X W, Sargent E H. ZnFe2O4 leaves grown on TiO2trees enhance photoelectrochemical water splitting[J]. Small, 2016, 12(23): 3181-3188. |
[43] | Guo K Y, Liu Z F, Zhou C L, Han J H, Zhao Y F, Liu Z C, Li Y J, Cui T, Wang B, Zhang J. Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance[J]. Appl. Catal. B: Environ., 2014, 154-155: 27-35. |
[44] | Li S, Mo Q L, Zhu S C, Wei Z Q, Tang B, Liu B J, Liang H, Xiao Y, Wu G, Ge X Z, Xiao F X. Unleashing insulating polymer as charge transport cascade mediator[J]. Adv. Funct. Mater., 2022, 32(30): 2110848. |
[45] | Wu J, Huang P, Fan H T, Wang G, Liu W S. Metal-organic framework-derived P-Cu2O/N-Ce-Fe2O3 heterojunction nanorod photoanode coupling with a FeOOH cocatalyst for high-performance photoelectrochemical water oxidation[J]. ACS Appl. Mater. Interfaces., 2020, 12(27): 30304-30312. |
[46] | Kruger J, Plass R, Gratzel M, Cameron P J, Peter L M. Charge transport and back reaction in solid-state dye-sensitized solar cells:? A study using intensity-modulated photovoltage and photocurrent spectroscopy[J]. J. Phys. Chem. B., 2003, 107(31): 7536-7539. |
[47] | Salant A, Shalom M, Tachan Z, Buhbut S, Zaban A, Banin U. Quantum rod-sensitized solar cell: Nanocrystal shape effect on the photovoltaic properties[J]. Nano lett., 2012, 12(4): 2095-2100. |
[48] | Ning X M, Li W Q, Meng Y, Qin D D, Chen J, Mao X, Xue Z H, Shan D L, Devaramani S, Lu X Q. New insight into procedure of interface electron transfer through cascade system with enhanced photocatalytic activity[J]. Small, 2018, 14(15): e1703989. |
[49] | Ning X M, Lu B Z, Zhang Z, Du P Y, Ren H X, Shan D L, Chen J, Gao Y J, Lu X Q. An efficient strategy for boosting photogenerated charge separation by using porphyrins as interfacial charge mediators[J]. Angew. Chem. Int. Ed., 2019, 58(47): 16800-16805. |
[50] | Ning X M, Yin D, Fan Y P, Zhang Q, Du P Y, Zhang D X, Chen J, Lu X Q. Plasmon-enhanced charge separation and surface reactions based on Ag-loaded transition-metal hydroxide for photoelectrochemical water oxidation[J]. Adv. Energy Mater., 2021, 11(17): 2100405. |
/
〈 |
|
〉 |