欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

碱性电解槽三维两相CFD模拟研究

  • 高玲玉 ,
  • 杨琳 ,
  • 王晨辉 ,
  • 单桂轩 ,
  • 霍欣怡 ,
  • 张梦飞 ,
  • 李韡 ,
  • 张金利
展开
  • a天津大学化工学院,天津 300072
    b物质绿色创造与制造海河实验室,天津 300192

收稿日期: 2022-07-08

  修回日期: 2023-02-15

  录用日期: 2023-02-21

  网络出版日期: 2023-02-27

Three-Dimensional Two-Phase CFD Simulation of Alkaline Electrolyzers

  • Ling-Yu Gao ,
  • Lin Yang ,
  • Chen-Hui Wang ,
  • Gui-Xuan Shan ,
  • Xin-Yi Huo ,
  • Meng-Fei Zhang ,
  • Wei Li ,
  • Jin-Li Zhang
Expand
  • aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
    bHaihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
*Tel: (86-22)27403389, E-mail: zhangjinli@tju.edu.cn

Received date: 2022-07-08

  Revised date: 2023-02-15

  Accepted date: 2023-02-21

  Online published: 2023-02-27

摘要

电解槽的结构和运行参数对碱性水电解的性能起着重要作用。针对工业碱性水电解槽紧凑的装配结构,特别是在电流密度大于5000 A·m-2时,本文首次建立了耦合电场和欧拉-欧拉k-ε湍流流场的三维数值模型,以准确模拟碱性水电解槽的性能。将模拟结果与实验数据进行比较,验证了模型的准确性。通过电解槽内部电场和流场特性的反馈,确定了适合的浓度、流量的操作条件和流道结构的优化设计方法。适当增加电解液浓度和流速有利于降低槽电压。KOH水溶液的最佳浓度和流速分别为6.0 - 8.0 mol·L-1和30.0 - 45.0 mL·min-1。随着电极与隔膜距离的增加,欧姆过电压显著增加;流道高度和双极板上导流柱的排列方式对电压的影响微弱,但三角形排列的导流柱和流道高度的增加有利于提高流体的分布均匀度,适当增加导流柱之间的距离有利于降低槽电压。多流体出入口电解槽有利于产生更均匀的流体分布,流道高度对多出入口电解槽同样影响不大。宽导流柱间距的多流体出入口电解槽G-2.5-T-0-5-3,配合高流量,既能降低槽电压,又能提高电解质在电极面的法向流速,使电解槽发挥最佳性能。本工作对碱性水电解高效电解槽的放大设计和优化具有一定指导意义。

本文引用格式

高玲玉 , 杨琳 , 王晨辉 , 单桂轩 , 霍欣怡 , 张梦飞 , 李韡 , 张金利 . 碱性电解槽三维两相CFD模拟研究[J]. 电化学, 2023 , 29(9) : 2207081 . DOI: 10.13208/j.electrochem.2207081

Abstract

The structural and operation parameters of the electrolyzer play important roles in the efficiency of alkaline water electrolysis. In this article, a three-dimensional numerical model coupled with the electric field and the Euler-Eulerian k-ε turbulence flow field was first established to simulate accurately the performance of alkaline electrolyzers, based on a compact assembly structure of the industrial alkaline water electrolyzers, especially at current densities higher than 5000 A·m-2. The simulation results are compared with the experimental data to verify the accuracy of the model. Suitable operating conditions for concentration, flow rate and the optimal design method of the flow channel structure are obtained from the feedback of the electric and flow fields characteristics inside the electrolyzers. Properly increasing the electrolyte concentration and flow rate facilitates the reduction of cell voltage. The optimum concentration and flow rate of potassium hydroxide aqueous solution are evaluated to be 6.0-8.0 mol·L-1 and 30.0-45.0 mL·min-1, respectively. With the increase of the gap between electrode and membrane, the ohmic overpotential increases significantly. The triangular arrangement of conductive columns on the bipolar plate and the increase of the channel height are beneficial to improve the distribution uniformity of the fluid, while the channel height and the arrangement of the conductive columns have little effect on the voltage. Appropriately increasing the spacing between the conductive columns facilitates to reduce the voltage. Multiple outlets and inlets structure is conducive to produce a more uniform fluid distribution. The channel height has little effect on the multiple outlets and inlets electrolyzer. The multiple outlets and inlets electrolyzer G-2.5-T-0-5-3 with wide spacing of conductive columns combined with high flow rate not only can reduce the cell voltage, but also enhance the normal flow rate of the electrolyte on the electrode surface, allowing the best performance of the electrolyzer. This work provides useful guidance on the scale-up design and optimization of highly efficient electrolyzer for alkaline water electrolysis.

参考文献

[1] Chi J, Yu H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chin. J. Catal., 2018, 39(3): 390-394.
[2] Zakaria Z, Kamarudin S K. A review of alkaline solid polymer membrane in the application of aem electrolyzer: Materials and characterization[J]. Int. J. Energy Res., 2021, 45(13): 18337-18354.
[3] Dong Z Y, Yang J, Yu L, Daiyan R, Amal R. A green hydrogen credit framework for international green hydrogen trading towards a carbon neutral future[J]. Int. J. Hydrogen Energy, 2022, 47(2): 728-734.
[4] Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog. Energy Combust. Sci., 2010, 36(3): 307-326.
[5] Jang D, Cho H S, Kang S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Appl. Energy, 2021, 287: 116554.
[6] De Dominici G, Gabriel B. Analytical study of over-voltages in alkaline electrolysis and their parametric dependencies through a multi-physical model[J]. Int. J. Energy Res., 2021, 46(3): 3295-3323.
[7] Zhang Z Q, Xing X H. Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell[J]. Int. J. Hydrogen Energy, 2020, 45(39): 20184-20193.
[8] Toghyani S, Fakhradini S, Afshari E, Baniasadi E, Abdollahzadeh Jamalabadi MY, Safdari Shadloo M. Optimization of operating parameters of a polymer exchange membrane electrolyzer[J]. Int. J. Hydrogen Energy, 2019, 44(13): 6403-6414.
[9] Lee C H, Lee J K, Zhao B, Fahy K F, LaManna J M, Baltic E, Hussey D S, Jacobson D L, Schulz V P, Bazylak A. Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers[J]. J. Power Sources, 2020, 446: 227312.
[10] Jang D, Choi W, Cho H S, Cho W C, Kim C H, Kang S. Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system[J]. J. Power Sources, 2021, 506: 230106.
[11] Han B, Steen S M, Mo J, Zhang F Y. Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy[J]. Int. J. Hydrogen Energy, 2015, 40(22): 7006-7016.
[12] Abdin Z, Webb C J, Gray E M. Modelling and simulation of an alkaline electrolyser cell[J]. Energy, 2017, 138: 316-331.
[13] Alexiadis A, Dudukovic M P, Ramachandran P, Cornell A, Wanng?rd J, Bokkers A. Liquid-gas flow patterns in a narrow electrochemical channel[J]. Chem. Eng. Sci., 2011, 66(10): 2252-2260.
[14] De Groot M T, Vreman A W. Ohmic resistance in zero gap alkaline electrolysis with a zirfon diaphragm[J]. Electrochim. Acta, 2021, 369: 137684.
[15] Rodríguez J, Amores E. CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production[J]. Processes, 2020, 8(12): 1634.
[16] Vogt H, Balzer R J. The bubble coverage of gas-evolving electrodes in stagnant electrolytes[J]. Electrochim. Acta, 2005, 50(10): 2073-2079.
[17] Li Y, Kang Z, Mo J, Yang G, Yu S, Talley D A, Han B, Zhang F Y. In-situ investigation of bubble dynamics and two-phase flow in proton exchange membrane electrolyzer cells[J]. Int. J. Hydrogen Energy, 2018, 43(24): 11223-11233.
[18] Wong X Y, Zhuo Y T, Shen Y S. Numerical analysis of hydrogen bubble behavior in a zero-gap alkaline water electrolyzer flow channel[J]. Ind. Eng. Chem. Res., 2021, 60(33): 12429-12446.
[19] Lee J, Alam A, Park C, Yoon S, Ju H. Modeling of gas evolution processes in porous electrodes of zero-gap alkaline water electrolysis cells[J]. Fuel, 2022, 315: 123273.
[20] Boissonneau P, Byrne B P. An experimental investigation of bubble-induced free convection in a small electrochemical cell[J]. J. Appl. Electrochem., 2000, 30(7): 767-775.
[21] Aldas K, Pehlivanoglu N, Mat M D. Numerical and experimental investigation of two-phase flow in an electrochemical cell[J]. Int. J. Hydrogen Energy, 2008, 33(14): 3668-3675.
[22] Phillips R, Edwards A, Rome B, Jones D R, Dunnill C W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design[J]. Int. J. Hydrogen Energy, 2017, 42(38): 23986-23994.
[23] Haverkort J W, Rajaei H. Voltage losses in zero-gap alkaline water electrolysis[J]. J. Power Sources, 2021, 497: 229864.
[24] Bratsch S G. Standard electrode potentials and temperature coefficients in water at 298.15 k[J]. J. Phys. Chem. Ref. Data, 1989, 18(1): 1-21.
[25] Gilliam R, Graydon J, Kirk D, Thorpe S. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures[J]. Int. J. Hydrogen Energy, 2007, 32(3): 359-364.
[26] González-Buch C, Herraiz-Cardona I, Ortega E, García-Antón J, Pérez-Herranz V. Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media[J]. Int. J. Hydrogen Energy, 2013, 38(25): 10157-10169.
[27] Mrjdha M S H, Kibria M F. Electrochemical studies of the nickel electrode for the oxygen evolution reaction[J]. Int. J. Hydrogen Energy, 1996, 21: 179-182.
[28] Torii K, Kodama M, Hirai S. Three-dimensional coupling numerical simulation of two-phase flow and electrochemical phenomena in alkaline water electrolysis[J]. Int. J. Hydrogen Energy, 2021, 46(71): 35088-35101.
[29] Weijs M, Janssen L J J J, Visser G. Ohmic resistance of solution in a vertical gas-evolving cell[J]. J. Appl. Electrochem., 1997, 27(4): 371-378.
[30] Zarghami A, Deen N G, Vreman A W. CFD modeling of multiphase flow in an alkaline water electrolyzer[J]. Chem. Eng. Sci., 2020, 227: 115926.
[31] Behbahani R M. Chemical engineering module: Comsol user`s guide[M]. 2013.
[32] Amores Vera E, Rodríguez Ruiz J, Merino Rodríguez C, García Escribano P. Study of an alkaline electrolyzer powered by renewable energy[C]// Proceedings of the COMSOL Conference, Stuttgart, Germany, 26-28 October 2011.
[33] Magnussen O M, Gross A. Toward an atomic-scale understanding of electrochemical interface structure and dynamics[J]. J. Am. Chem. Soc., 2019, 141(12): 4777-4790.
[34] Karacan C, Lohmann-Richters F P, Keeley G P, Scheepers F, Shviro M, Müller M, Carmo M, Stolten D. Challenges and important considerations when benchmarking single-cell alkaline electrolyzers[J]. Int. J. Hydrogen Energy, 2022, 47(7): 4294-4303.
文章导航

/