欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

影响电池性能的因素:金属离子溶剂化结构衍生的界面行为还是固体电解质界面膜?

  • 程浩然 ,
  • 马征 ,
  • 郭营军 ,
  • 孙春胜 ,
  • 李茜 ,
  • 明军
展开
  • 1.中国科学院长春应用化学研究所稀土资源利用国家重点实验室, 吉林 长春 130022
    2.中国科学技术大学应用化学与工程学院, 安徽 合肥 230026
    3.湖州昆仑亿恩科电池材料有限公司, 浙江 湖州 313103

收稿日期: 2022-10-06

  修回日期: 2022-10-19

  网络出版日期: 2022-11-28

Which Factor Dominates Battery Performance: Metal Ion Solvation Structure-Derived Interfacial Behavior or Solid Electrolyte Interphase Layer?

  • Hao-Ran Cheng ,
  • Zheng Ma ,
  • Ying-Jun Guo ,
  • Chun-Sheng Sun ,
  • Qian Li ,
  • Jun Ming
Expand
  • 1. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry,Chinese Academy of Sciences, Changchun 130022, Jilin, China
    2. School of Applied Chemistry andEngineering University of Science and Technology of China, Hefei 230026, Anhui, China
    3. Huzhou Kunlun Enchem Battery Materials Co., Ltd., Huzhou 313103, Zhejiang, China
* Tel: (86-431)85262592, E-mail: jun.ming@ciac.ac.cn

Received date: 2022-10-06

  Revised date: 2022-10-19

  Online published: 2022-11-28

摘要

通过电解液分解在电极上形成的固体电解质界面(SEI)层被认为是影响电池性能的最重要因素。 然而,我们发现金属离子溶剂化结构也会影响其电极性能,尤其可以阐明许多SEI无法解释的实验现象。基于该综述,本文总结了金属离子溶剂化结构和衍生的金属离子去溶剂化行为的重要性,并建立了相应的界面模型以展示界面行为和电极性能之间的关系,并将其应用于不同的电极和电池体系。我们强调了电极界面离子/分子相互作用对电极性能的影响,该解释与以往基于SEI的解释不同。该综述为理解电池性能和指导电解液设计提供了一个新的视角。

本文引用格式

程浩然 , 马征 , 郭营军 , 孙春胜 , 李茜 , 明军 . 影响电池性能的因素:金属离子溶剂化结构衍生的界面行为还是固体电解质界面膜?[J]. 电化学, 2022 , 28(11) : 2219012 . DOI: 10.13208/j.electrochem.2219012

Abstract

Solid-electrolyte interphase (SEI) layer formed on the electrode by electrolyte decomposition has been considered to be one of the most important factors affecting the battery performance. We discover that the metal ion solvation structure can also influence the performance, particularly, it can elucidate many phenomena that the SEI cannot. In this review, we summarize the importance of the metal ion solvation structure and the derived metal ion de-solvation behaviors, by which we can build an interfacial model to show the relationship between the interfacial behavior and electrode performance, and then apply to different electrode and battery systems. We emphasize the influences of ionic and molecular interactions on electrode surface that differ from previous SEI-based interpretations. This review provides a new view angle to understand the battery performance and guide the electrolyte design.

参考文献

[1] Li M, Lu J, Chen Z W, Amine K. 30 years of lithium-ion batteries[J]. Adv. Mater., 2018, 30(33): 1800561.
[2] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy Environ. Sci., 2011, 4(9): 3287-3295.
[3] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[4] Wu Y Q, Xie L Q, Ming H, Guo Y J, Hwang J Y, Wang W X, He X M, Wang L M, Alshareef H N, Sun Y K, Ming J. An empirical model for the design of batteries with high energy density[J]. ACS Energy Lett., 2020, 5(3): 807-816.
[5] Markevich E, Salitra G, Aurbach D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Lett., 2017, 2(6): 1337-1345.
[6] Ruan D G, Chen M, Wen X Y, Li S Q, Zhou X G, Che Y X, Chen J K, Xiang W J, Li S L, Wang H, Liu X, Li W S. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive[J]. Nano Energy, 2021, 90: 106535.
[7] Su C C, He M N, Cai M, Shi J Y, Amine R, Rago N D, Guo J C, Rojas T, Ngo A T, Amine K. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries[J]. Nano Energy, 2022, 92: 106720.
[8] Tan L J, Chen S Q, Chen Y W, Fan J J, Ruan D G, Nian Q S, Chen L, Jiao S H, Ren X D. Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality[J]. Angew. Chem. Int. Edit., 2022, 61(32): e202203693.
[9] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104(10): 4303-4417.
[10] Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. Effects of some organic additives on lithium deposition in propylene carbonate[J]. J. Electrochem. Soc., 2002, 149(12): A1578-A1583.
[11] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chem. Rev., 2014, 114(23): 11503-11618.
[12] Liang J Y, Zeng X X, Zhang X D, Wang P F, Ma J Y, Yin Y X, Wu X W, Guo Y G, Wan L J. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries[J]. J. Am. Chem. Soc., 2018, 140(22): 6767-6770.
[13] Wahyudi W, Cao Z, Kumar P, Li M L, Wu Y Q, Hedhili M N, Anthopoulos T D, Cavallo L, Li L J, Ming J. Phase inversion strategy to flexible freestanding electrode: Critical coupling of binders and electrolytes for high performance Li-S battery[J]. Adv. Funct. Mater., 2018, 28(34): 1802244.
[14] Fan J J, Dai P, Shi C G, Wen Y F, Luo C X, Yang J, Song C, Huang L, Sun S G. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries[J]. Adv. Funct. Mater., 2021, 31(17): 2010500.
[15] Hou L P, Yao N, Xie J, Shi P, Sun S Y, Jin C B, Chen C M, Liu Q B, Li B Q, Zhang X Q, Zhang Q. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries[J]. Angew. Chem. Int. Edit., 2022, 61(20): e202201406.
[16] Shin W, Manthiram A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries[J]. Angew. Chem. Int. Edit., 2022, 61(13): e202115909.
[17] Xing L D, Zheng X W, Schroeder M, Alvarado J, Cresce A V, Xu K, Li Q S, Li W S. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Acc. Chem. Res., 2018, 51(2): 282-289.
[18] Niu C J, Liu D Y, Lochala J A, Anderson C S, Cao X, Gross M E, Xu W, Zhang J G, Whittingham M S, Xiao J, Liu J. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732.
[19] Shadike Z, Lee H, Borodin O, Cao X, Fan X L, Wang X L, Lin R Q, Bak S M, Ghose S, Xu K, Wang C S, Liu J, Xiao J, Yang X Q, Hu E Y. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes[J]. Nat. Nanotechnol., 2021, 16(5): 549-554.
[20] Kim M S, Zhang Z W, Rudnicki P E, Yu Z A, Wang J, Y Wang H S, Oyakhire S T, Chen Y L, Kim S C, Zhang W B, Boyle D T, Kong X, Xu R, Huang Z J, Huang W, Bent S F, Wang L W, Qin J, Bao Z N, Cui Y. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries[J]. Nat. Mater., 2022, 21(4): 445-454.
[21] Wang H S, Yu Z, Kong X, Kim S C, Boyle D T, Qin J, Bao Z N, Cui Y. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588-616.
[22] Fong R, Vonsacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J]. J. Electrochem. Soc., 1990, 137(7): 2009-2013.
[23] Cheng M, Tang W P, Li Y, Zhu K J. Study on compositions and changes of SEI-film of Li2MnO3 positive material during the cycles[J]. Catal. Today, 2016, 274: 116-122.
[24] Hope M A, Rinkel B L D, Gunnarsdottir A B, Marker K, Menkin S, Paul S, Sergeyev I V, Grey C P. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal[J]. Nat. Commun., 2020, 11(1): 2224.
[25] Zhao F P, Zhang S M, Li Y G, Sun X L. Emerging characterization techniques for electrode interfaces in sulfide-based all-solid-state lithium batteries[J]. Small Str-uctures, 2021, 3(1): 2100146.
[26] Zhou Y F, Su M, Yu X F, Zhang Y Y, Wang J G, Ren X D, Cao R G, Xu W, Baer D R, Du Y G, Borodin O, Wang Y T, Wang X L, Xu K, Xu Z J, Wang C M, Zhu Z H. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nat. Nanotechnol., 2020, 15(3): 224-230.
[27] Andersson A M, Henningson A, Siegbahn H, Jansson U, Edstr?m K. Electrochemically lithiated graphite characterised by photoelectron spectroscopy[J]. J. Power Sources, 2003, 119: 522-527.
[28] Lu P, Harris S J. Lithium transport within the solid electrolyte interphase[J]. Electrochem. Commun., 2011, 13(10): 1035-1037.
[29] Xu H Y, Li Z P, Liu T C, Han C, Guo C, Zhao H, Li Q, Lu J, Amine K, Qiu X P. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode[J]. Angew. Chem. Int. Edit., 2022, 61(30): e202202894.
[30] Li Y Z, Li Y B, Pei A L, Yan K, Sun Y M, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S, Cui Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510.
[31] Zhang Z W, Li Y Z, Xu R, Zhou W J, Li Y B, Oyakhire S T, Wu Y C, Xu J W, Wang H S, Yu Z A, Boyle D T, Huang W, Ye Y S, Chen H, Wan J Y, Bao Z N, Chiu W, Cui Y. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries[J]. Science, 2022, 375(6576): 66-70.
[32] Cheng H R, Sun Q J, Li L L, Zou Y G, Wang Y Q, Cai T, Zhao F, Liu G, Ma Z, Wahyudi W, Li Q, Ming J. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Lett., 2022, 7(1): 490-513.
[33] Ming J, Cao Z, Wahyudi W, Li M L, Kumar P, Wu Y Q, Hwang J Y, Hedhili M N, Cavallo L, Sun Y K, Li L J. New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases[J]. ACS Energy Lett., 2018, 3(2): 335-340.
[34] Ming J, Cao Z, Wu Y Q, Wahyudi W, Wang W X, Guo X R, Cavallo L, Hwang J Y, Shamim A, Li L J, Sun Y K, Alshareef H N. New insight on the role of electrolyte additives in rechargeable lithium ion batteries[J]. ACS Energy Lett., 2019, 4(11): 2613-2622.
[35] Jeong S K, Inaba M, Iriyama Y, Abe T, Ogumi Z. Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions[J]. Electrochem. Solid State Lett., 2003, 6(1): A13-A15.
[36] Xu K. “Charge-transfer” process at graphite/electrolyte in-terface and the solvation sheath structure of Li+ in nonaqueous electrolytes[J]. J. Electrochem. Soc., 2007, 154(3): A162-A167.
[37] Yamada Y, Yaegashi M, Abe T, Yamada A. A superconcentrated ether electrolyte for fast-charging Li-ion batteries[J]. Chem. Commun., 2013, 49(95): 11194-11196.
[38] Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. J. Am. Chem. Soc., 2014, 136(13): 5039-5046.
[39] Ren X D, Gao P Y, Zou L F, Jiao S H, Cao X, Zhang X H, Jia H, Engelhard M H, Matthews B E, Wu H P, Lee H, Niu C J, Wang C M, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries[J]. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(46): 28603-28613.
[40] Cao X, Gao P Y, Ren X D, Zou L F, Engelhard M H, Matthews B E, Hu J T, Niu C J, Liu D Y, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries[J]. Proc. Natl. Acad. Sci. U.S.A., 2021, 118(9): e2020357118.
[41] Liu G, Sun Q J, Li Q, Zhang J L, Ming J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges[J]. Energy & Fuels, 2021, 35(13): 10405-10427.
[42] Sun Q J, Cao Z, Zhang J L, Cheng H R, Zhang J, Li Q, Ming H, Liu G, Ming J. Metal catalyst to construct carbon nanotubes networks on metal oxide microparticles towards designing high-performance electrode for high-voltage lithium-ion batteries[J]. Adv. Funct. Mater., 2021, 31(22): 2009122.
[43] Wahyudi W, Ladelta V, Tsetseris L, Alsabban M M, Guo X R, Yengel E, Faber H, Adilbekova B, Seitkhan A, Emwas A H, Hedhili M N, Li L J, Tung V, Hadjichristidis N, Anthopoulos T D, Ming J. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries[J]. Adv. Funct. Mater., 2021, 31(23): 2101593.
[44] Liu G, Cao Z, Wang P, Ma Z, Zou Y G, Sun Q J, Cheng H R, Cavallo L, Li S Y, Li Q, Ming J. Switching electrolyte interfacial model to engineer solid electrolyte interface for fast charging and wide-temperature lithium-ion batteries[J]. Adv. Sci., 2022, 9(26): 2201893.
[45] Tian Z N, Zou Y G, Liu G, Wang Y Z, Yin J, Ming J, Alshareef H N. Electrolyte solvation structure design for sodium ion batteries[J]. Adv. Sci., 2022, 9(22): 2201207.
[46] Wahyudi W, Guo X R, Ladelta V, Tsetseris L, Nugraha M I, Lin Y B, Tung V, Hadjichristidis N, Li Q, Xu K, Ming J, Anthopoulos T D. Hitherto unknown solvent and anion pairs in solvation structures reveal new insights into high-performance lithium-ion batteries[J]. Adv. Sci., 2022, 9(28): 2202405.
[47] Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv. Mater., 2018, 30(21): 1706102.
[48] Chen S R, Zheng J M, Yu L, Ren X D, Engelhard M H, Niu C J, Lee H, Xu W, Xiao J, Liu J, Zhang J G. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2(8): 1548-1558.
[49] Deng W, Dai W H, Zhou X F, Han Q G, Fang W, Dong N, He B Y, Liu Z P. Competitive solvation-induced concurrent protection on the anode and cathode toward a 400 Wh·kg-1 lithium metal battery[J]. ACS Energy Lett., 2021, 6(1): 115-123.
[50] Jie Y L, Liu X J, Lei Z W, Wang S Y, Chen Y W, Huang F Y, Cao R G, Zhang G Q, Jiao S H. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte[J]. Angew. Chem. Int. Edit., 2020, 59(9): 3505-3510.
[51] Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charg-ing batteries[J]. Angew. Chem. Int. Edit., 2021, 60(7): 3402-3406.
[52] Li F, He J, Liu J D, Wu M G, Hou Y Y, Wang H P, Qi S H, Liu Q H, Hu J W, Ma J M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angew. Chem. Int. Edit., 2021, 60(12): 6600-6608.
[53] Ming J, Cao Z, Li Q, Wahyudi W, Wang W X, Cavallo L, Park K J, Sun Y K, Alshareef H N. Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries[J]. ACS Energy Lett., 2019, 4(7): 1584-1593.
[54] Xu K, Lee U, Zhang S S, Jow T R. Graphite/electrolyte interface formed in LiBOB-based electrolytes-II. Potential dependence of surface chemistry on graphitic anodes[J]. J. Electrochem. Soc., 2004, 151(12): A2106-A2112.
[55] Yao W H, Zhang Z R, Gao J, Li J, Xu J, Wang Z C, Yang Y. Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries[J]. Energy Environ. Sci., 2009, 2(10): 1102-1108.
[56] Nie M Y, Chalasani D, Abraham D P, Chen Y J, Bose A, Lucht B L. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy[J]. J. Phys. Chem. C, 2013, 117(3): 1257-1267.
[57] Ping P, Xia X, Wang Q S, Sun J H, Dahn J R. The effect of trimethoxyboroxine on some positive electrodes for Li-ion batteries[J]. J. Electrochem. Soc., 2013, 160(3): A426-A429.
[58] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model[J]. J. Electrochem. Soc., 1979, 126(12): 2047-2051.
[59] Peled E. Film forming reaction at the lithium/electrolyte interface[J]. J. Power Sources, 1983, 9(3-4): 253-266.
[60] Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. J. Electrochem. Soc., 1997, 144(8): L208-L210.
[61] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22: 587-603.
[62] Aurbach D, Levi M D, Levi E, Schechter A. Failure and stabilization mechanisms of graphite electrodes[J]. J. Phys. Chem. B, 1997, 101(12): 2195-2206.
[63] Li T, Balbuena P B. Theoretical studies of the reduction of ethylene carbonate[J]. Chem. Phys. Lett, 2000, 317(3-5): 421-429.
[64] Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochim. Acta, 2002, 47(9): 1423-1439.
[65] Edstr?m K, Gustafsson T, Thomas J O. The cathode-electrolyte interface in the Li-ion battery[J]. Electrochim. Acta, 2004, 50(2-3): 397-403.
[66] Blyth R I R, Buqa H, Netzer F P, Ramsey M G, Besenhard J O, Golob P, Winter M. XPS studies of graphite electrode materials for lithium ion batteries[J]. Appl. Surf. Sci., 2000, 167(1-2): 99-106.
[67] Yang G, Ivanov I N, Ruther R E, Sacci R L, Subjakova V, Hallinan D T, Nanda J. Electrolyte solvation structure at solid-liquid interface probed by nanogap surface-enhanced Raman spectroscopy[J]. ACS Nano, 2018, 12(10): 10159-10170.
[68] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. J. Power Sources, 2006, 162(2): 1379-1394.
[69] Li W Y, Yao H B, Yan K, Zheng G Y, Liang Z, Chiang Y M, Cui Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nat. Commun., 2015, 6: 7436.
[70] Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy Environ. Sci., 2016, 9(6): 1955-1988.
[71] Xia J, Dahn J R. Improving sulfolane-based electrolyte for high voltage Li-ion cells with electrolyte additives[J]. J. Power Sources, 2016, 324: 704-711.
[72] Xia J, Nelson K J, Lu Z H, Dahn J R. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells[J]. J. Power Sources, 2016, 329: 387-397.
[73] Zheng J M, Engelhard M H, Mei D H, Jiao S H, Polzin B J, Zhang J G, Xu W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 17012.
[74] Wang X S, Mai W C, Guan X C, Liu Q, Tu W Q, Li W S, Kang F Y, Li B H. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques[J]. Energy Environ. Mater., 2020, 4(3): 284-292.
[75] Yamada Y, Koyama Y, Abe T, Ogumi Z. Correlation between charge-discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes[J]. J. Phys. Chem. C, 2009, 113(20): 8948-8953.
[76] Yamada Y, Takazawa Y, Miyazaki K, Abe T. Electrochemical lithium intercalation into graphite in dimethyl sulfoxide-based electrolytes: Effect of solvation structure of lithium ion[J]. J. Phys. Chem. C, 2010, 114(26): 11680-11685.
[77] Jiang L L, Yan C, Yao Y X, Cai W L, Huang J Q, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angew. Chem. Int. Ed. Engl., 2021, 60(7): 3402-3406.
[78] Zhang J, Cao Z, Zhou L, Liu G, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Model-based design of graphite-compatible electrolytes in potassium-ion batteries[J]. ACS Energy Lett., 2020, 5(8): 2651-2661.
[79] Liu G, Cao Z, Zhou L, Zhang J, Sun Q J, Hwang J Y, Cavallo L, Wang L M, Sun Y K, Ming J. Additives engineered nonflammable electrolyte for safer potassium ion batteries[J]. Adv. Funct. Mater., 2020, 30(43): 2001934.
[80] Li Q, Cao Z, Liu G, Cheng H R, Wu Y Q, Ming H, Park G T, Yin D M, Wang L M, Cavallo L, Sun Y K, Ming J. Electrolyte chemistry in 3D metal oxide nanorod arrays deciphers lithium dendrite-free plating/stripping behaviors for high-performance lithium batteries[J]. J. Phys. Chem. Lett., 2021, 12(20): 4857-4866.
[81] Li Q, Cao Z, Wahyudi W, Liu G, Park G T, Cavallo L, Anthopoulos T D, Wang L M, Sun Y K, Alshareef H N, Ming J. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries[J]. ACS Energy Lett., 2021, 6(1): 69-78.
[82] Zhang J, Cao Z, Zhou L, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Model-based design of stable electrolytes for potassium ion batteries[J]. ACS Energy Lett., 2020, 5(10): 3124-3131.
[83] Zhou L, Cao Z, Zhang J, Sun Q J, Wu Y Q, Wahyudi W, Hwang J Y, Wang L M, Cavallo L, Sun Y K, Alshareef H N, Ming J. Engineering sodium-ion solvation structure to stabilize sodium anodes: Universal strategy for fast-charging and safer sodium-ion batteries[J]. Nano Lett., 2020, 20(5): 3247-3254.
[84] Zhou L, Cao Z, Zhang J, Cheng H R, Liu G, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries[J]. Adv. Mater., 2021, 33(8): 2005993.
[85] Zhou L, Cao Z, Wahyudi W, Zhang J, Hwang J Y, Cheng Y, Wang L M, Cavallo L, Anthopoulos T, Sun Y K, Alshareef H N, Ming J. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries[J]. ACS Energy Lett., 2020, 5(3): 766-776.
[86] Sun Q J, Cao Z, Ma Z, Zhang J L, Cheng H R, Guo X R, Park G T, Li Q, Xie E Q, Cavallo L, Sun Y-K, Ming J. Dipole-dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries[J]. ACS Energy Lett., 2022, 7(10): 3545-3556.
[87] Sun Q J, Cao Z, Ma Z, Zhang J L, Wahyudi W, Cai T, Cheng H R, Li Q, Kim H, Xie E Q, Cavallo L, Sun Y K, Ming J. Discerning roles of interfacial model and solid electrolyte interphase layer for stabilizing antimony anode in lithium-ion batteries[J]. ACS Materials Lett., 2022, 4(11): 2233-2243.
[88] Sun Q J, Cao Z, Ma Z, Zhang J L, Wahyudi W, Liu G, Cheng H R, Cai T, Xie E Q, Cavallo L, Li Q, Ming J. Interfacial and interphasial chemistry of electrolyte components to invoke high-performance antimony anodes and non-flammable lithium-ion batteries[J]. Adv. Funct. Mater., doi: 10.1002/adfm.202210292.
[89] Zou Y G, Shen Y B, Wu Y Q, Xue H J, Guo Y J, Liu G, Wang L M, Ming J. A designed durable electrolyte for high-voltage lithium-ion batteries and mechanism analysis[J]. Chem.-Eur. J., 2020, 26(35): 7930-7936.
[90] Liao X L, Huang Q M, Mai S W, Wang X S, Xu M Q, Xing L D, Liao Y H, Li W S. Self-discharge suppression of 4.9 V LiNi0.5Mn1.5O4 cathode by using tris(trimethylsilyl)borate as an electrolyte additive[J]. J. Power Sources, 2014, 272: 501-507.
[91] R?ser S, Lerchen A, Ibing L, Cao X, Kasnatscheew J, Glorius F, Winter M, Wagner R. Highly effective solid electrolyte interphase-forming electrolyte additive enabling high voltage lithium-ion batteries[J]. Chem. Mater., 2017, 29(18): 7733-7739.
[92] Ma L, Ellis L, Glazier S L, Ma X W, Liu Q Q, Li J, Dahn J R. LiPO2F2 as an electrolyte additive in Li[Ni0.5Mn0.3Co0.2]O2/graphite pouch cells[J]. J. Electrochem. Soc., 2018, 165(5): A891-A899.
[93] Zou Y G, Cao Z, Zhang J, Wahyudi W, Wu Y Q, Liu G, Li Q, Cheng H R, Zhang D Y, Park G T, Cavallo L, Anthopoulos T D, Wang L M, Sun Y K, Ming J. Interfacial model deciphering high-voltage electrolytes for high energy density, high safety, and fast-charging lithium-ion batteries[J]. Adv. Mater., 2021, 33(43): 2102964.
[94] Ming J, Guo J, Xia C, Wang W X, Alshareef H N. Zinc-ion batteries: materials, mechanisms, and applications[J]. Mat. Sci. Eng. R., 2019, 135: 58-84.
文章导航

/