锂硫电池复合正极研究进展
收稿日期: 2022-12-08
修回日期: 2022-12-02
网络出版日期: 2022-12-16
Advances on Composite Cathodes for Lithium-Sulfur Batteries
Received date: 2022-12-08
Revised date: 2022-12-02
Online published: 2022-12-16
锂硫电池因其超高的理论能量密度被视为极具前景的下一代电化学储能体系,其中高比容量的硫正极提供了锂硫电池的能量密度优势并直接决定了电池的实际性能。经过数十年的发展,最具前景的硫正极体系分别是硫碳复合(S/C)正极和硫化聚丙烯腈(SPAN)正极。本文系统综述了S/C正极和SPAN正极的最新研究进展。首先,简要介绍了两种正极的工作原理并进行了比较。S/C正极发生固-液-固多相转化反应,充放电表现为双平台特征。与之相比,SPAN正极发生固-固反应,充放电曲线为单平台。然后,对两种正极所面临的挑战和目前报道的优化策略进行了系统的分析与讨论。对于S/C正极,主要调控策略包括电极结构修饰、电催化剂设计与辅助氧化还原介体调控;对于SPAN正极,主要调控策略包括电极结构设计、电极形貌调控、杂原子掺杂和外源性氧化还原介体调控。最后,在电池尺度上对S/C正极和SPAN正极进行了综合比较,并对基于S/C正极和SPAN正极的锂硫电池在未来所面对的机遇与挑战进行了展望。
李西尧 , 赵长欣 , 李博权 , 黄佳琦 , 张强 . 锂硫电池复合正极研究进展[J]. 电化学, 2022 , 28(12) : 2219013 . DOI: 10.13208/j.electrochem.2219013
Lithium-sulfur (Li-S) batteries are deemed as high-promising next-generation energy storage technique due to their ultrahigh theoretical energy density, where the sulfur cathodes with high specific capacity guarantee the energy density advantage and directly determine the battery performances. After decades of exploration, the most promising sulfur cathodes are sulfur/carbon composite (S/C) cathodes and sulfurized polyacrylonitrile (SPAN) cathodes. In this manuscript, recent advances on S/C and SPAN cathodes in Li-S batteries are comprehensively reviewed. The electrochemical reaction circumstances on S/C and SPAN cathodes are firstly introduced and compared to reveal the working mechanisms of the two types of Li-S batteries. The S/C cathodes mainly undergo solid-liquid-solid multi-phase conversion processes with typical double-plateau charge-discharge polarization curves. In comparison, the SPAN cathodes follow solid-solid conversion and exhibit single-plateau charge-discharge characteristics. Following that, key challenges and targeted optimizing strategies of the S/C and SPAN cathodes are respectively presented and discussed. For Li-S batteries with S/C cathodes, the main optimizing strategies are electrode structure modification, efficient electrocatalyst design, and redox comediation. For SPAN cathodes, the main optimizing strategies are electrode structure modification, morphology regulation by co-polymerization, heteroatom doping at molecular level, and extrinsic redox mediation. At last, current research status of Li-S batteries with S/C or SPAN cathodes are systematically analyzed through the comparison of several battery parameters, and perspectives on challenges and opportunities of S/C and SPAN cathodes in Li-S batteries are presented to guide future researches.
[1] | Shen L, Song Y W, Wang J, Zhao C X, Bi C X, Sun S Y, Zhang X Q, Li B Q, Zhang Q. Synergistic catalysis on dual-atom sites for high-performance lithium-sulfur batteries[J]. Small Struct., 2022: 2200205. |
[2] | Wang Y, Lv Y, Su Y B, Chen L Q, Li H, Wu F. 5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries[J]. Nano Energy, 2021, 90: 106589. |
[3] | Wu F, Liu L L, Wang S, Xu J R, Lu P S, Yan W L, Peng J, Wu D X, Li H. Solid state ionics -selected topics and new directions[J]. Prog. Mater. Sci., 2022, 126: 100921. |
[4] | Yao N, Chen X, Fu Z H, Zhang Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chem. Rev., 2022, 122(12): 10970-11021. |
[5] | Wang Y, Wang Z X, Wu D X, Niu Q H, Lu P S, Ma T H, Su Y B, Chen L Q, Li H, Wu F. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery[J]. eScience, 2022, 2(5): 537-545. |
[6] | Ye G, Zhao M, Hou L P, Chen W J, Zhang X Q, Li B Q, Huang J Q. Evaluation on a 400 Wh·kg-1 lithium-sulfur pouch cell[J]. J. Energy Chem., 2022, 66: 24-29. |
[7] | Wang J C, Zhang Z Y, Han J F, Wang X F, Chen L Q, Li H, Wu F. Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes[J]. Nano Energy, 2022, 100: 107528. |
[8] | Peng H J, Huang J Q, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chem. Soc. Rev., 2017, 46(17): 5237-5288. |
[9] | Yao N P, Heredy L A, Saunders R C. Secondary lithium-sulfur battery[J]. J. Electrochem. Soc., 1970, 117: C247. |
[10] | Xue L X, Li Y Y, Hu A J, Zhou M J, Chen W, Lei T Y, Yan Y C, Huang J W, Yang C T, Wang X F, Hu Y, Xiong J. In-situ/operando Raman techniques in lithium-sulfur batteries[J]. Small Struct., 2022, 3(3): 2100170. |
[11] | Hou L P, Yao L Y, Bi C X, Xie J, Li B Q, Huang J Q, Zhang X Q. High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium-sulfur batteries[J]. J. Energy Chem., 2022, 68: 300-305. |
[12] | Song Y W, Peng Y Q, Zhao M, Lu Y, Liu J N, Li B Q, Zhang Q. Understanding the impedance response of lithium polysulfide symmetric cells[J]. Small Sci., 2021, 1(11): 2100042. |
[13] | Cheng X B, Yan C, Huang J Q, Li P, Zhu L, Zhao L, Zhang Y, Zhu W, Yang S T, Zhang Q. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection[J]. Energy Storage Mater., 2017, 6: 18-25. |
[14] | Kong L, Jin Q, Zhang X T, Li B Q, Chen J X, Zhu W C, Huang J Q, Zhang Q. Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries[J]. J. Energy Chem., 2019, 39: 17-22. |
[15] | Chen W J, Li B Q, Zhao C X, Zhao M, Yuan T Q, Sun R C, Huang J Q, Zhang Q. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. Angew. Chem. Int. Ed., 2020, 59(27): 10732-10745. |
[16] | Cheng Q, Chen Z X, Li X Y, Hou L P, Bi C X, Zhang X Q, Huang J Q, Li B Q. Constructing a 700 Wh·kg-1-level rechargeable lithium-sulfur pouch cell[J]. J. Energy Chem., 2023, 76: 181-186. |
[17] | Holoubek J, Liu H D, Wu Z H, Yin Y J, Xing X, Cai G R, Yu S C, Zhou H Y, Pascal T A, Chen Z, Liu P. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nat. Energy, 2021, 6(3): 303-313. |
[18] | Zhao M, Peng Y Q, Li B Q, Zhang X Q, Huang J Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries[J]. J. Energy Chem., 2021, 56: 203-208. |
[19] | Wang J L, Yang J, Xie J Y, Xu N X, Li Y. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochem. Commun., 2002, 4(6): 499-502. |
[20] | Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506. |
[21] | Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Recharge-able lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787. |
[22] | Zak J J, Kim S S, Laskowski F A L, See K A. An exploration of sulfur redox in lithium battery cathodes[J]. J. Am. Chem. Soc., 2022, 144(23): 10119-10132. |
[23] | Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2018, 30(22): 1705590. |
[24] | Lei J, Liu T, Chen J J, Zheng M S, Zhang Q, Mao B W, Dong Q F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries[J]. Chem, 2020, 6(10): 2533-2557. |
[25] | Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. J. Phys. Chem. Lett., 2014, 5(5): 915-918. |
[26] | Wang J L, Yang J, Xie J Y, Xu N X. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Adv. Mater., 2002, 14(13-14): 963-965. |
[27] | Chen Z Y, Zhou J J, Guo Y S, Liang C D, Yang J, Wang J L, Nuli Y N. A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery[J]. Electrochim. Acta, 2018, 282: 555-562. |
[28] | Wang W X, Cao Z, Elia G A, Wu Y Q, Wahyudi W, Abou-Hamad E, Emwas A H, Cavallo L, Li L J, Ming J. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries[J]. ACS Energy Lett., 2018, 3(12): 2899-2907. |
[29] | Fanous J, Wegner M, Grimminger J, Andresen ?, Buchmeiser M R. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for re-chargeable lithium batteries[J]. Chem. Mater., 2011, 23(22): 5024-5028. |
[30] | Zhang S S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery[J]. Energies, 2014, 7(7): 4588-4600. |
[31] | Warneke S, Hintennach A, Buchmeiser M R. Communication—influence of carbonate-based electrolyte composition on cell performance of span-based lithium-sulfur batteries[J]. J. Electrochem. Soc., 2018, 165(10): A2093. |
[32] | Yang H J, Naveed A, Li Q Y, Guo C, Chen J H, Lei J Y, Yang J, Nuli Y N, Wang J L. Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode[J]. Energy Storage Mater., 2018, 15: 299-307. |
[33] | Li Q Y, Yang H J, Xie L S, Yang J, Nuli Y N, Wang J L. Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries[J]. Chem. Commun., 2016, 52(92): 13479-13482. |
[34] | Wei S, Ma L, Hendrickson K E, Tu Z, Archer L A. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. J. Am. Chem. Soc., 2015, 137(37): 12143-12152. |
[35] | Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities[J]. Angew. Chem. Int. Ed., 2020, 59(31): 12636-12652. |
[36] | Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(24): 1700260. |
[37] | Li X Y, Feng S, Zhao M, Zhao C X, Chen X, Li B Q, Huang J Q, Zhang Q. Surface gelation on disulfide electrocatalysts in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2022, 61(7): e202114671. |
[38] | Wang Z K, Li Y, Ji H Q, Zhou J Q, Qian T, Yan C L. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(47). |
[39] | Feng S, Singh R K, Fu Y C, Li Z, Wang Y L, Bao J, Xu Z J, Li G S, Anderson C, Shi L L, Lin Y H, Khalifah P G, Wang W, Liu J, Xiao J, Lu D P. Low-tortuous and dense single-particle-layer electrode for high-energy lithium-sulfur batteries[J]. Energy Environ. Sci., 2022, 15(9): 3842-3853. |
[40] | Zhao C X, Li X Y, Zhao M, Chen Z X, Song Y W, Chen W J, Liu J N, Wang B, Zhang X Q, Chen C M, Li B Q, Huang J Q, Zhang Q. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2021, 143(47): 19865-19872. |
[41] | Zhao M, Li B Q, Chen X, Xie J, Yuan H, Huang J Q. Redox comediation with organopolysulfides in working lithium-sulfur batteries[J]. Chem, 2020, 6(12): 3297-3311. |
[42] | Zhao M Q, Peng H J, Tian G L, Zhang Q, Huang J Q, Cheng X B, Tang C, Wei F. Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries[J]. Adv. Mater., 2014, 26(41): 7051-7058. |
[43] | Lv D, Zheng J, Li Q, Xie X, Ferrara S, Nie Z, Mehdi L B, Browning N D, Zhang J G, Graff G L, Liu J, Xiao J. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes[J]. Adv. Energy Mater., 2015, 5(16): 1402290. |
[44] | Zhang S J, Zhang Y S, Shao G S, Zhang P. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions[J]. Nano Res., 2021, 14(11): 3942-3951. |
[45] | Kang N, Lin Y X, Yang L, Lu D P, Xiao J, Qi Y, Cai M. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density[J]. Nat. Commun., 2019, 10: 4597. |
[46] | Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries[J]. Nano Energy, 2020, 68: 104307. |
[47] | Li B Q, Zhang S Y, Kong L, Peng H J, Zhang Q. Porphyrin organic framework hollow spheres and their applications in lithium-sulfur batteries[J]. Adv. Mater., 2018, 30(23): 1707483. |
[48] | Liu X, Huang J Q, Zhang Q, Mai L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017, 29(20): 1601759. |
[49] | Geng C N, Hua W X, Wang D W, Ling G W, Zhang C, Yang Q H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques[J]. SusMat, 2021, 1(1): 51-65. |
[50] | Al Salem H, Babu G, V. Rao C, Arava L M R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137(36): 11542-11545. |
[51] | Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO2-tin heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-1703. |
[52] | Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He Y B, Zhang Q F, Kang F Y, Lü W, Yang Q H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(32): 2000315. |
[53] | Zhao M, Peng H J, Li B Q, Chen X, Xie J, Liu X, Zhang Q, Huang J Q. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion[J]. Angew. Chem. Int. Ed., 2020, 59(23): 9011-9017. |
[54] | Xue W J, Shi Z, Suo L M, Wang C, Wang Z A, Wang H Z, So K P, Maurano A, Yu D W, Chen Y M, Qie L, Zhu Z, Xu G Y, Kong J, Li J. Intercalation-conversion hybrid cathodes enabling Li-S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nat. Energy, 2019, 4(5): 374-382. |
[55] | Li X Y, Feng S, Zhao C X, Cheng Q, Chen Z X, Sun S Y, Chen X, Zhang X Q, Li B Q, Huang J Q, Zhang Q. Regulating lithium salt to inhibit surface gelation on an electrocatalyst for high-energy-density lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2022, 144(32): 14638-14646. |
[56] | Xie J, Song Y W, Li B Q, Peng H J, Huang J Q, Zhang Q. Direct intermediate regulation enabled by sulfur containers in working lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2020, 59(49): 22150-22155. |
[57] | Li X Y, Zhang Q. One stone two birds: Dual-effect kinetic regulation strategy for practical lithium-sulfur batteries[J]. J. Energy Chem., 2022, 65: 302-303. |
[58] | Zhao M, Chen X, Li X Y, Li B Q, Huang J Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(13): 2007298. |
[59] | Zhao M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q, Huang J Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52. |
[60] | Chen X, Peng L F, Wang L H, Yang J Q, Hao Z X, Xiang J W, Yuan K, Huang Y H, Shan B, Yuan L X, Xie J. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nat. Commun., 2019, 10: 1021. |
[61] | Zhao C X, Chen W J, Zhao M, Song Y W, Liu J N, Li B Q, Yuan T, Chen C M, Zhang Q, Huang J Q. Redox mediator assists electron transfer in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. EcoMat, 2021, 3(1): e12066. |
[62] | Frey M, Zenn R K, Warneke S, Müller K, Hintennach A, Dinnebier R E, Buchmeiser M R. Easily accessible, textile fiber-based sulfurized poly(acrylonitrile) as Li/S cathode material: Correlating electrochemical performance with morphology and structure[J]. ACS Energy Lett., 2017, 2(3): 595-604. |
[63] | Razzaq A A, Yao Y Z, Shah R, Qi P W, Miao L X, Chen M Z, Zhao X H, Peng Y, Deng Z. High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes[J]. Energy Storage Mater., 2019, 16: 194-202. |
[64] | Wang X F, Qian Y M, Wang L N, Yang H, Li H L, Zhao Y, Liu T X. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Adv. Funct. Mater., 2019, 29(39): 1902929. |
[65] | Li S P, Han Z L, Hu W, Peng L F, Yang J Q, Wang L H, Zhang Y Y, Shan B, Xie J. Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism[J]. Nano Energy, 2019, 60: 153-161. |
[66] | Lebherz T, Frey M, Hintennach A, Buchmeiser M R. Influence of morphology of monolithic sulfur-poly(acrylonitrile) composites used as cathode materials in lithium-sulfur batteries on electrochemical performance[J]. RSC Adv., 2019, 9(13): 7181-7188. |
[67] | Zhou J J, Guo Y S, Liang C D, Cao L J, Pan H, Yang J, Wang J L. A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode[J]. Chem. Commun., 2018, 54(43): 5478-5481. |
[68] | Yin L C, Wang J L, Lin F J, Yang J, Nuli Y. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries[J]. Energy Environ. Sci., 2012, 5(5): 6966-6972. |
[69] | Yang H J, Chen J H, Yang J, Wang J L. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries[J]. Angew. Chem. Int. Ed., 2020, 59(19): 7306-7318. |
[70] | Li Z, Zhang J T, Lu Y, Lou X W. A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances[J]. Sci. Adv., 2018, 4(6): eaat1687. |
[71] | Wang L H, Chen X, Li S P, Yang J Q, Sun Y L, Peng L F, Shan B, Xie J. Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium-sulfur batteries[J]. J. Mater. Chem. A, 2019, 7(20): 12732-12739. |
/
〈 |
|
〉 |