人工智能在锂离子电池研发中的应用
收稿日期: 2022-08-31
修回日期: 2022-09-23
网络出版日期: 2022-11-14
Application of Artificial Intelligence to Lithium-Ion Battery Research and Development
Received date: 2022-08-31
Revised date: 2022-09-23
Online published: 2022-11-14
锂离子电池已成为解决现代社会储能问题的最佳解决方案之一。然而,电池材料和器件开发都是复杂的多变量问题,传统的依赖研究人员进行实验的试错法在电池性能提升方面遇到了瓶颈。人工智能(AI)具有强大的高速、海量数据处理能力,是上述突破研究瓶颈的最具潜力的技术。其中,机器学习 (ML) 算法在评估多维数据变量和集合之间的组合关联方面的独特优势有望帮助研究人员发现不同因素之间的相互作用规律并阐明材料合成和设备制造的机制。本综述总结了锂离子电池传统研究方法遇到的各种挑战,并详细介绍了人工智能在电池材料研究、电池器件设计与制造、材料与器件表征、电池循环寿命与安全性评估等方面的应用。最重要的是,我们介绍了AI和ML在电池研究中面临的挑战,并讨论了它们应用的缺点和前景。我们相信,未来实验科学家、数学建模专家和AI专家之间更紧密的合作将极大地促进AI和ML方法用以解决传统方法难以克服的电池和材料问题。
朱振威 , 邱景义 , 王莉 , 曹高萍 , 何向明 , 王京 , 张浩 . 人工智能在锂离子电池研发中的应用[J]. 电化学, 2022 , 28(12) : 2219003 . DOI: 10.13208/j.electrochem.2219003
Lithium-ion batteries (LIBs) have become one of the best solutions to the energy storage issue in modern society. However, the battery materials and device development are both complex, and involve multivariable problems. Traditional trial-and-error approach, which relies on researchers to conduct experiments, has encountered bottlenecks in the improvement of the battery performance. Artificial intelligence (AI) is the most potential technology to deal with this issue due to its powerful high-speed and capabilities of processing massive data. In particular, the capability of machine learning (ML) algorithms in assessing multidimensional data variables and discovering patterns in the sets are expected to assist researchers in discovering patterns and elucidating the mechanisms of material synthesis and device fabrication. This review summarizes various challenges encountered in traditional research methods of LIBs and introduces the applications of AI in battery material research, battery device design and manufacturing, material and device characterizations, and battery cycle life and safety assessment in detail. Most importantly, we present the challenges faced by AI and ML in battery research, and discuss the shortcomings and prospects of their applications. We believe that a closer collaboration among experimentalists, modeling specialists, and AI experts in the future will greatly facilitate AI and ML methods for solving battery and materials problems that are difficult to be solved by traditional methods.
[1] | Walsh A. The quest for new functionality[J]. Nat. Chem., 2015, 7(4): 274-275. |
[2] | Mistry A, Franco A A, Cooper S J, Roberts S A, Viswanathan V. How machine learning will revolutionize electrochemical sciences[J]. ACS Energy Lett., 2021, 6(4): 1422-1431. |
[3] | Vegge T, Tarascon J M, Edstr?m K. Toward better and smarter batteries by combining AI with multisensory and self-healing approaches[J]. Adv. Energy Mater., 2021, 11(23): 2100362. |
[4] | El-Bousiydy H, Lombardo T, Primo E N, Duquesnoy M, Morcrette M, Johansson P, Simon P, Grimaud A, Franco A A. What can text mining tell us about lithium-ion battery researchers’ habits?[J] Batter. Supercaps, 2021, 4(5): 758-766. |
[5] | Duquesnoy M, Lombardo T, Chouchane M, Primo E N, Franco AA. Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning[J]. J. Power Sources, 2020, 480: 229103. |
[6] | Gao X L, Liu X H, He R, Wang M Y, Xie W L, Brandon N P, Wu B, Ling H P, Yang S C. Designed high-performance lithium-ion battery electrodes using a novel hybrid model-data driven approach[J]. Energy Storage Mater., 2021, 36: 435-458. |
[7] | Berecibar M. Machine-learning techniques used to accurately predict battery life[J]. Nature, 2019, 568(7752): 325-326. |
[8] | Li Y, Liu K, Foley A M, Zu-lke A, Berecibar M, Nanini- Maury E, Van Mierlo J, Hoster H E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renew. Sust. Energy Rev., 2019, 113: 109254. |
[9] | Rezvanizaniani S M, Liu Z C, Chen Y, Lee J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. J. Power Sources, 2014, 256: 110-124. |
[10] | Chen C, Zuo Y X, Ye W K, Li X G, Deng Z, Ong S P. Critical review of machine learning of energy materials[J]. Adv. Energy Mater., 2020, 10(8): 1903242. |
[11] | Gao T H, Lu W. Machine learning toward advanced energy storage devices and systems[J]. iScience, 2021, 24(1): 101936. |
[12] | Xu H Y, Zhu J E, Finegan D P, Zhao H B, Lu X K, Li W, Hoffman N, Bertei A, Shearing P, Bazant M Z. Guiding the design of heterogeneous electrode microstructures for Li-ion batteries: microscopic imaging, predictive modeling, and machine learning[J]. Adv. Energy Mater., 2021, 11(19): 2003908. |
[13] | Li J G, Tu Y X, Liu R, Lu Y, Zhu X. Toward “on-demand” materials synthesis and scientific discovery through intelligent robots[J]. Adv. Sci., 2020, 7(7): 1901957. |
[14] | Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555. |
[15] | Severson K A, Attia P M, Jin N, Perkins N, Jiang B B, Yang Z, Chen M H, Aykol M, Herring P K, Fraggedakis D, Bazant M Z, Harris S J, Chueh W C, Braatz R D. Data-driven prediction of battery cycle life before capacity degradation[J]. Nat. Energy, 2019, 4(5): 383-391. |
[16] | Petrich L, Westhoff D, Feinauer J, Finegan D P, Daemi S R, Shearing P R, Schmidt V. Crack detection in lithium-ion cells using machine learning[J]. Comput. Mater. Sci., 2017, 136: 297-305. |
[17] | Li S Q, Li J W, He H W, Wang H X. Lithium-ion battery modeling based on big data[M]. Editors: Yan J, Kaldellis J K, Campana P E, Energy Procedia, 2019, 159: 168-173. |
[18] | Russell S, Norvig P. Artificial intelligence a modern approach[M]. 4th ed. Hoboken, Pearson Education, Inc., 2020. |
[19] | Hastie T, Tibshirani R, Friedman J. The Elements of statistical learning[M]. 2nd ed. New York: Springer, 2017. |
[20] | Han J Q, Jentzen A, Weinan E. Solving high-dimensional partial differential equations using deep learning[J]. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(34): 8505-8510. |
[21] | Qian E, Kramer B, Peherstorfer B, Willcox K. Lift & learn: physics-informed machine learning for large-scale nonlinear dynamical systems[J]. Phys. D, 2020, 406: 132401. |
[22] | Zhao H B, Storey B D, Braatz R D, Bazant M Z. Learning the physics of pattern formation from images[J]. Phys. Rev. Lett., 2020, 124(6): 060201. |
[23] | Rynne O, Dubarry M, Molson C, Nicolas E, Lepage D, Prébé A, Aymé-Perrot D, Rochefort D, Dollé M. Exploiting materials to their full potential, a Li-ion battery electrode formulation optimization study[J]. ACS Appl. Energy Mater., 2020, 3(3): 2935-2948. |
[24] | Li J, Arbizzani C, Kjelstrup S, Xiao J, Xia Y Y, Yu Y, Yang Y, Belharouak I, Zawodzinski T, Myung S T, Raccichini R, Passerini S. Good practice guide for papers on batteries for the journal of power sources[J]. J. Power Sources, 2020, 452: 227824. |
[25] | Arbizzani C, Yu Y, Li J, Xiao J, Xia Y Y, Yang Y, Santato C, Raccichini R, Passerini S. Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources[J]. J. Power Sources, 2020, 450: 227636. |
[26] | Nakayama M, Kanamori K, Nakano K, Jalem R, Takeuchi I, Yamasaki H. Data-driven materials exploration for Li-ion conductive ceramics by exhaustive and informatics-aided computations[J]. Chem. Rec., 2019, 19(4): 771-778. |
[27] | Jalem R, Nakayama M, Noda Y, Le T, Takeuchi I, Tateyama Y, Yamazaki H. A general representation scheme for crystalline solids based on voronoi-tessellation real feature values and atomic property data[J]. Sci. Technol. Adv. Mater., 2018, 19(1): 231-242. |
[28] | Isayev O, Fourches D, Muratov E N, Oses C, Rasch K, Tropsha A, Curtarolo S. Materials cartography: representing and mining materials space using structural and electronic fingerprints[J]. Chem. Mater., 2015, 27(3): 735-743. |
[29] | Rupp M, Tkatchenko A, Muller K R, Von Lilienfeld O A. Fast and accurate modeling of molecular atomization energies with machine learning[J]. Phys. Rev. Lett., 2012, 108: 058301. |
[30] | Schutt K T, Glawe H, Brockherde F, Sanna A, Muller K R, Gross E K U. How to represent crystal structures for machine learning: towards fast prediction of electronic properties[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 89(20): 205118. |
[31] | Yang L S, Dacek S, Ceder G. Proposed definition of crystal substructure and substructural similarity[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 90(5): 054102. |
[32] | Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering[J]. Science, 2018, 361(6400): 360-365. |
[33] | Van Der Ven A, Deng Z, Banerjee S, Ong S P. Rechargeable alkali-ion battery materials: theory and computation[J]. Chem. Rev., 2020, 120(14): 6977-7019. |
[34] | Behler J, Parrinello M, Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Phys. Rev. Lett., 2007, 98(14): 146401. |
[35] | Wang H, Zhang L F, Han J Q, Weinan E, DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Comput. Phys. Commun., 2008, 228: 178-184. |
[36] | Unke O T, Chmiela S, Sauceda H E, Gastegger M, Poltavsky I, Schutt K Y, Tkatchenko A, MullerK R. Machine learning force fields[J]. Chem. Rev., 2021, 121(16): 10142-10186. |
[37] | Bhowmik A, Castelli I E, Garcia-Lastra J M, J?rgensen P B, Winther O, Vegge T. A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning[J]. Energy Storage Mater., 2019, 21: 446-456. |
[38] | H?se F, Roch L M, Aspuru-Guzik A. Next-generation experimentation with self-driving laboratories[J]. Trends Chem., 2019, 1(3): 282-291. |
[39] | Dave A, Mitchell J, Kandasamy K, Wang H, Burke S, Paria B, Póczos B, Whitacre J, Viswanathan V. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning[J]. Cell Reports Phys. Sci., 2020, 1(12): 100264. |
[40] | Fitzhugh W, Ghen X, Wang Y C, Ye L H, Li X L. Solid-electrolyte-interphase design in constrained ensemble for solid-state batteries[J]. Energy Environ. Sci., 2021, 14(8): 4574-4583 |
[41] | Kim E, Huang K, Saunders A, McCallum A, Ceder G, Olivetti E. Materials synthesis insights from scientific literature via text extraction and machine learning[J]. Chem. Mater., 2017, 29(21): 9436-9444. |
[42] | Jain A, Hautier G, Ong S P, Persson K. New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships[J]. J. Mater. Res., 2016, 31(8): 977-994. |
[43] | Thon C, Finke B, Kwade A, Schilde C. Artificial intelligence in process engineering[J]. Adv. Intell. Syst., 2021, 3(6): 2000261. |
[44] | Evans R, Boreland M. A Multivariate approach to utilizing mid-sequence process control data[C]. 2015 IEEE 42nd Photovolt. Spec. Conf., PVSC 2015, December 17, 2015. |
[45] | Turetskyy A, Thiede S, Thomitzek M, von Drachenfels N, Pape T, Herrmann C. Toward data-driven applications in lithium-ion battery cell manufacturing[J]. Energy Technol., 2020, 8(2): 1900136. |
[46] | Cunha R P, Lombardo T, Primo E N, Franco A A. Artificial intelligence investigation of NMC cathode manufacturing parameters interdependencies[J]. Batter. Supercaps, 2020, 3(1): 60-67. |
[47] | Lombardo T, Hoock J B, Primo E N, Ngandjong A C, Duquesnoy M, Franco A A. Accelerated optimization methods for force-field parametrization in battery electrode manufacturing modeling[J]. Batter. Supercaps, 2020, 3(8): 721-730. |
[48] | Mubarok K. Redefining industry 4.0 and its enabling technologies[J]. J. Phys.: Conf. Ser., 2020, 1569: 032025. |
[49] | Lin C C, Deng D J, Chen Z Y, Chen K C. Key design of driving industry 4.0: joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks[J]. IEEE Commun. Mag., 2016, 54(10): 46-52. |
[50] | Szymanski N J, Bartel C J, Zeng Y, Tu Q S, Ceder G. Probabilistic deep learning approach to automate the interpretation of multi-phase diffraction spectra[J]. Chem. Mater., 2021, 33(11): 4204-4215. |
[51] | Yang X G, Kahnt M, Bruckner D, Schropp A, Fam Y, Becher J, Grunwaldt J D, Sheppard T L, Schroer C G. Tomographic reconstruction with a generative adversarial network[J]. J. Synchrotron Radiat., 2020, 27: 486-493. |
[52] | Dixit M B, Verma A, Zaman W, Zhong X L, Kenesei P, Park J S, Almer J, Mukherjee P P, Hatzell K B. Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning[J]. ACS Appl. Energy Mater., 2020, 3(10): 9534-9542. |
[53] | Furat O, Finegan D P, Diercks D, Usseglio-Viretta F, Smith K, Schmidt V. Mapping the architecture of single electrode particles in 3D, using electron backscatter diffraction and machine learning segmentation[J]. J. Power Sources, 2021, 483: 229148. |
[54] | LaBonte T, Martinez C, Roberts S A. We know where we don’t know: 3D bayesian CNNs for credible geometric uncertainty[J]. 2019, arXiv:10.2172/1605518. |
[55] | Jiang Z S, Li J Z, Yang Y, Mu L Q, Wei C X, Yu X Q, Pianetta P, Zhao K J, Cloetens P, Lin F, Liu Y J. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes[J]. Nat. Commun., 2020, 11(1): 2310. |
[56] | Tian F, Ben LB, Yu H Y, Ji H X, Zhao W W, Liu Z Z, Monteiro R, Ribas R M, Zhu Y M, Huang M J. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material[J]. Nano Energy, 2022, 98: 107222. |
[57] | Li J Z, Sharma N, Jiang Z S, Yang Y, Monaco F, Xu Z R, Hou D, Ratner D, Pianetta P, Cloetens P, Lin F, Zhao K J, Liu Y J. Dynamics of particle network in composite battery cathodes[J]. Science, 2022, 376(6592): 517-521. |
[58] | Wang H S, Ji Y J, Li Y Y. Simulation and design of energy materials accelerated by machine learning[J]. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2020, 10(1): e1421. |
[59] | Badmos O, Kopp A, Bernthaler T, Schneider G. Image-based defect detection in lithium-ion battery electrode using convolutional neural networks[J]. J. Intell. Manuf., 2020, 31(4): 885-897. |
[60] | Nguyen T T, Villanova J, Su Z L, Tucoulou R, Fleutot B, Delobel B, Delacourt C, Demortiere A. 3D Quantification of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high-energy density electrodes by X-ray holographic nano-tomography[J]. Adv. Energy Mater., 2021, 11(8): 2003529. |
[61] | Lu X K, Bertei A, Finegan D P, Tan C, Daemi S R, Weaving J S, O’Regan K B, Heenan T M M, Hinds G, Kendrick E, Brett D J L, Shearing P R. 3D Microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nat. Commun., 2020, 11(1): 2079. |
[62] | Lu X K, Daemi S R, Bertei A, Kok M D R, O’Regan K B, Rasha L, Park J, Hinds G, Kendrick E, Brett D J L, Shearing P R. Microstructural evolution of battery electrodes during calendaring[J]. Joule, 2020, 4(12): 2746-2768. |
[63] | Li Q, Yi T C, Wang X L, Pan H, Y Quan B G, Liang T J, Guo X X, Yu X Q, Wang H, Huang X J, Chen L Q, Li H. In-situ visualization of lithium plating in all-solid-state lithium-metal battery[J]. Nano Energy, 2019, 63: 103895. |
[64] | Kazyak E, Garcia-Mendez R, LePage W S, Sharafi A, Davis A L, Sanchez A J, Chen K H, Haslam C, Sakamoto J, Dasgupta N P. Li Penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility[J]. Matter, 2020, 2(4): 1025-1048. |
[65] | Lombardo T, Duquesnoy M, El-Bouysidy H aAren F, Gallo-Bueno A, Jorgensen P B, Bhowmik A, Demortiere A, Ayerbe E, Alcaide F, Reynaud M, Carrasco J, Grimaud A, Zhang C, Vegge T, Johansson, Franco A A. Artificial intelligence applied to battery research: hype or reality[J]. Chem. Rev., 2022, 122(12): 10899-10969 |
[66] | Li W, Zhu J E, Xia Y, Gorji M B, Wierzbicki T. Data-driven safety envelope of lithium-ion batteries for electric vehicles[J]. Joule, 2019, 3(11): 2703-2715. |
[67] | Zhu S, Zhao N Q, Sha J W. Predicting battery life with early cyclic data by machine learning[J]. Energy Storage, 2019, 1(6): e98. |
[68] | Harlow J E, Ma X M, Li J, Logan E, Liu Y L, Zhang N, Ma L, Glazier S L, Cormier M M E, Genovese M, Buteau S, Cameron A, Stark J E, Dahn J R. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies[J]. J. Electrochemist. Soc., 2019, 166(13): A3031-3044. |
[69] | Attia P M, Grover A, Jin N, Severson K A, Markov T M, Liao Y H, Chen M H, Cheong B, Perkins N, Yang Z, Herring P K, Aykol M, Harris S J, Braatz R D, Ermon S, Chueh W C. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402. |
[70] | Bhowmik A, Vegge T. AI fast track to battery fast charge[J]. Joule, 2020, 4(4): 717-719. |
[71] | Hoffman M W, Shahriari B, De Freitas N. On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning[C]//Procedings of the 17th International Conference on Articial Intelligence and Statistics (AISTATs) 2014, Raykjavir, Iceland, JMLR: W&cp, volume 33: 365-374. |
[72] | Choi Y, Ryu S, Park K, Kim H. Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles[J]. IEEE Access, 2019, 7: 75143-75152. |
[73] | Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. J. Power Sources, 2013, 241: 680-689. |
[74] | Xiong R, Li L L, Li Z R, Yu Q Q, Mu H. An electrochemical model based degradation state identification method of lithium-ion battery for all-climate electric vehicles application[J]. Appl. Energy, 2018, 219: 264-275. |
[75] | De Sutter L, Firouz Y, De Hoog J, Omar N, Van Mierlo J. Battery aging assessment and parametric study of lithium-ion batteries by means of a fractional differential model[J]. Electrochemist. Acta, 2019, 305: 24-36. |
[76] | Feng F, Teng S L, Liu K L, Xie J L, Xie Y, Liu B, Li K. Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural- network model[J]. J. Power Sources, 2020, 455: 227935. |
[77] | Chen X, Ye L H, Wang Y, Li X. Beyond expert-level performance prediction for rechargeable batteries by unsupervised machine learning[J]. Adv. Intell. Syst., 2019, 1(8): 1900102. |
[78] | Zhou Z K, Duan B, Kang Y Z, Shang Y L, Cui N X, Chang L, Zhang C H. An efficient screening method for retired lithium-ion batteries based on support vector machine[J]. J. Cleaner Prod., 2020, 267: 121882. |
[79] | Billy W, W Dhammika W, Shichun Y, Xinhua L. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems[J]. Energy and AI, 2020: 100016 |
[80] | Jiao J Y, Lai G M, Zhao L, Lu J Z, Li Q D, Xu X Q, Jiang Y, He Y B, Ouyang C Y, Pan F, Li H, Zheng J X. Self-healing mechanism of lithium in lithium metal[J]. Adv. Sci., 2022, 9(12): 2105574. |
[81] | Liang C. A review of the recent progress in battery informatics[J]. NPJ Comput. Mater., 2022, 8(1): 33. |
/
〈 |
|
〉 |