欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

多电子反应材料推动高能量密度电池发展:材料与体系创新

  • 郭瑞琪 ,
  • 吴锋 ,
  • 王欣然 ,
  • 白莹 ,
  • 吴川
展开
  • 1.北京理工大学材料学院,环境科学工程北京市重点实验室,北京 100081
    2.北京理工大学长三角研究院(嘉兴),浙江 嘉兴 314019

收稿日期: 2022-09-21

  修回日期: 2022-10-25

  网络出版日期: 2022-11-14

Multi-Electron Reaction-Boosted High Energy Density Batteries: Material and System Innovation

  • Rui-Qi Guo ,
  • Feng Wu ,
  • Xin-Ran Wang ,
  • Ying Bai ,
  • Chuan Wu
Expand
  • 1. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science & Engineering Beijing Institute of Technology Beijing 100081, China
    2. Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing 314019, China
*Xin-Ran Wang: Tel: (86-10)68918766, E-mail: wangxinran@bit.edu.cn;
Ying Bai: Tel: (86-10)68912528, E-mail: membrane@bit.edu.cn;
Chuan Wu: Tel: (86-10)68912676, E-mail: chuanwu@bit.edu.cn

Received date: 2022-09-21

  Revised date: 2022-10-25

  Online published: 2022-11-14

摘要

全球能源结构转型推动了电化学储能系统的飞速发展,提高能量密度是发展新型二次电池的重要方向和研究热点。然而,受限于传统的嵌入式反应,锂离子电池在能量密度上已经逐渐达到极限。要发展更高能量密度的新型二次电池,需要在新理论、新材料和新体系上进行突破。基于此,本文总结了20年来多电子反应材料概念的形成、理论的发展、材料创制的历程。在“轻元素多电子反应”和“多离子效应”核心设计准则的指导下,具有上述特征的电极材料与电池结构不断发展迭代,引领了高能量密度电池的发展方向。从阳离子氧化还原到阴阳离子协同氧化还原,从嵌入式反应到合金化反应,从传统有机液态体系到电池固态化,本文梳理了典型的多电子反应正负极材料的结构特性、体系创新和工程化前景,剖析了多电子反应电极材料的瓶颈问题,并分析了电池固态化发展所面临的挑战。最后,对高能量密度电池的未来发展趋势和难点进行了归纳与展望。

本文引用格式

郭瑞琪 , 吴锋 , 王欣然 , 白莹 , 吴川 . 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学, 2022 , 28(12) : 2219011 . DOI: 10.13208/j.electrochem.2219011

Abstract

The continuous development of the global energy structure transformation has put forward higher demands upon the development of batteries. The improvements of the energy density have become one of the important indicators and hot topic for novel secondary batteries. The energy density of existing lithium-ion battery has encountered a bottleneck due to the limitations of material and systems. Herein, this paper introduces the concept and development of multi-electron reaction materials over the past twenty years. Guided by the multi-electron reaction, light weight electrode and multi-ion effect, current development strategies and future trends of high-energy-density batteries are highlighted from the perspective of materials and structure system innovation. Typical cathode and anode materials with the multi-electron reactions are summarized from cation-redox to anion-redox, from intercalation-type to alloying-type, and from liquid systems to solid-state lithium batteries. The properties of the typical materials and their engineering prospects are comprehensively discussed, and additionally, the application potential and the main challenges currently encountered by solid-state batteries are also introduced. Finally, this paper gives a comprehensive outlook on the development of high-energy-density batteries.

参考文献

[1] Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26: 443-463.
[2] Rudola A, Wright C J, Barker J. Reviewing the safe shipping of lithium-ion and sodium-ion cells: A materials chemistry perspective[J]. Energy Mater. Adv., 2021, 2021: 9798460.
[3] Li W J, Xu H Y, Yang Q, Li J M, Zhang Z Y, Wang S B, Peng J Y, Zhang B, Chen X L, Zhang Z, Yang M, Zhao Y, Geng Y Y, Huang W S, Ding Z P, Zhang L, Tian Q Y, Yu H G, Li H. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Sci. Technol., 2020, 9: 448-478.
[4] Gao M D, Li H, Xu L, Xue Q, Wang X N, Bai Y, Wu C. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. J. Energy Chem., 2021, 59: 666-687.
[5] Shen Y B, Zhang Y T, Han S J, Wang J W, Peng Z Q, Chen L W. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes[J]. Joule, 2018, 2(9): 1674-1689.
[6] Wang X R, Tan G Q, Bai Y, Wu F, Wu C. Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective[J]. Electrochem. Energy Rev., 2021, 4(1): 35-66.
[7] Zhang C Z, Liu Z, Wu F, Lin L J, Qi F. Electrochemical generation of ferrate on SnO2-Sb2O3/Ti electrodes in strong concentration basic condition[J]. Electrochem. Commun., 2004, 6(11): 1104-1109.
[8] Jung C H, Shim H, Eum D, Hong S H. Challenges and recent progress in LiNixCoyMn1-x-yO2 (NCM) cathodes for lithium ion batteries[J]. J. Korean Ceram. Soc., 2021, 58(1): 1-27.
[9] Sun H H, Choi W, Lee J K, Oh I H, Jung H G. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio[J]. J. Power Sources, 2015, 275: 877-883.
[10] Wang L F, Wang R, Wang J Y, Xu R, Wang X D, Zhan C. Nanowelding to improve the chemomechanical stability of the Ni-rich layered cathode materials[J]. ACS Appl. Mater. Interfaces, 2021, 13(7): 8324-8336.
[11] Noh H J, Chen Z, Yoon C S, Lu J, Amine K, Sun Y K. Cathode material with nanorod structure an application for advanced high-energy and safe lithium batteries[J]. Chem. Mater., 2013, 25(10): 2109-2115.
[12] Zhang J C, Yang Z Z, Gao R, Gu L, Hu Z B, Liu X F. Suppressing the structure deterioration of Ni-rich LiNi0.8Co0.1Mn0.1O2 through atom-scale interfacial integration of self-forming hierarchical spinel layer with Ni gradient concentration[J]. ACS Appl. Mater. Interfaces, 2017, 9(35): 29794-29803.
[13] Jiang M, Danilov D L, Eichel R A, Notten P H L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Adv. Energy Mater., 2021, 11(48): 2103005.
[14] Zhao H C, Bai Y, Jin H F, Zhou J, Wang X R, Wu C. Unveiling thermal decomposition kinetics of single-crystalline Ni-rich LiNi0.88Co0.07Mn0.05O2 cathode for safe lithium-ion batteries[J]. Chem. Eng. J., 2022, 435: 134927.
[15] Yu H J, Zhou H S. High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries[J]. J. Phys. Chem. Lett., 2013, 4(8): 1268-1280.
[16] Johnson C S, Li N, Lefief C, Thackeray M M. Anomalous capacity and cycling stability of xLi2MnO3·(1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 oC[J]. Electrochem. Commun., 2007, 9(4): 787-795.
[17] Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7(1): 760-767.
[18] Hu S L, Li Y, Chen Y H, Peng J M, Zhou T F, Pang W K, Didier C, Peterson V K, Wang H Q, Li Q Y, Guo Z P. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode[J]. Adv. Energy Mater., 2019, 9(34): 1901795.
[19] Yu R Z, Banis M N, Wang C H, Wu B, Huang Y, Cao S, Li J J, Jamil S, Lin X T, Zhao F P, Lin W H, Chang B B, Yang X K, Huang H, Wang X Y, Sun X L. Tailoring bulk Li+ ion diffusion kinetics and surface lattice oxygen activity for high-performance lithium-rich manganese-based layered oxides[J]. Energy Storage Mater., 2021, 37: 509-520.
[20] Zuo Y X, Li B A, Jiang N, Chu W S, Zhang H, Zou R Q, Xia D G. A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure[J]. Adv. Mater., 2018, 30(16): 1707255.
[21] Wang Z K, Li Y, Ji H Q, Zhou J Q, Qian T, Yan C L. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries[J]. Adv. Mater., 2022: 2203699.
[22] Yuan K G, Wang A B, Cao G P, Yang Y S. Preparation and electrochemical performance of a novel lithium battery cathode material polysulfurpolyaniline[J]. Chem. J. Chinese U., 2005, 26(11):2117-2119.
[23] Wang M J, Wang W K, Wang A B, Yuan K G, Miao L X, Zhang X L, Huang Y Q, Yu Z B, Qiu J Y. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries[J]. Chem. Commun., 2013, 49(87): 10263-10265.
[24] Zhao C R, Wang W K, Yu Z B, Zhang H, Wang A B, Yang Y S. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities[J]. J. Mater. Chem., 2010, 20(5): 976-980.
[25] Yu Z B, Wang W K, Wang A B, Yuan K G, Yang Y S. Effect of electrolyte on electrochemical performance of sulfur electrode[J]. Battery Bimon., 2006, 36(1): 3-4.
[26] Wang W K, Yu Z B, Yuan K G, Wang A B, Yang Y S. Key materials of high energy lithium sulfur batteries[J]. Prog. Chem., 2011, 23(2-3): 540-547.
[27] Ge M, Cao C, Biesold G M, Sewell C D, Hao S M, Huang J, Zhang W, Lai Y, Lin Z. Recent advances in silicon-based electrodes: from fundamental research toward practical applications[J]. Adv. Mater., 2021, 33(16): 2004577.
[28] Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. High-performance lithium battery anodes using silicon nanowires[J]. Nat. Nanotechnol., 2008, 3(1): 31-35.
[29] Chen S, Shen L, van Aken P A, Maier J, Yu Y. Dual-fun-ctionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Adv. Mater., 2017, 29(21): 1605650.
[30] Zhang J G, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes[J]. Chem. Rev., 2020, 120(24): 13312-13348.
[31] Liu Y, Huang S B, Meng Q Q, Fan Y C, Wang B Y, Yang Y S, Cao G P, Zhang H. In-situ growth of Ag particles anchored Cu foam scaffold for dendrite-free lithium metal anode[J]. J. Alloy. Compd., 2021, 885: 160882.
[32] Meng Q Q, Deng B, Zhang H M, Wang B Y, Zhang W F, Wen Y H, Ming H, Zhu X Y, Guan Y P, Xiang Y, Li M, Cao G P, Yang Y S, Peng H L, Zhang H, Huang Y Q. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene[J]. Energy Storage Mater., 2019, 16: 419-425.
[33] Zhang R, Chen X, Shen X, Zhang X Q, Chen X R, Cheng X B, Yan C, Zhao C Z, Zhang Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777.
[34] Zhang K, Wu F, Zhang K, Weng S T, Wang X R, Gao M D, Sun Y H, Cao D, Bai Y, Xu H J, Wang X F, Wu C. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Mater., 2021, 41: 485-494.
[35] Gao H, Grundish N S, Zhao Y, Zhou A, Goodenough J B. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries[J]. Energy Mater. Adv., 2021, 2021: 1932952.
[36] Wu F, Zhang K, Liu Y R, Gao H C, Bai Y, Wang X R, Wu C. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects[J]. Energy Storage Mater., 2020, 33: 26-54.
[37] Zhang K, Wu F, Wang X R, Zheng L M, Yang X Y, Zhao H C, Sun Y H, Zhao W B, Bai Y, Wu C A. An ion-dipole-reinforced polyether electrolyte with ion-solvation cages enabling high-voltage-tolerant and ion-conductive solid-state lithium metal batteries[J]. Adv. Funct. Mater., 2022, 32(5): 2107764.
[38] Zhang K, Wu F, Wang X R, Weng S T, Yang X Y, Zhao H C, Guo R Q, Sun Y H, Zhao W B, Song T L, Wang X F, Bai Y, Wu C. 8.5 μm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries[J]. Adv. Energy Mater., 2022, 12(24): 2200368.
[39] Cheng S H S, Liu C, Zhu F Y, Zhao L, Fan R, Chung C Y, Tang J N, Zeng X R, He Y B. (Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery[J]. Nano Energy, 2021, 80: 105562.
[40] Liu Y J, He P, Zhou H S. Rechargeable solid-state Li-air and Li-S batteries: materials, construction, and challenges[J]. Adv. Energy Mater., 2018, 8(4): 1701602.
[41] Li S M, Chen Z F, Zhang W T, Li S N, Pan F. High-thro-ughput screening of protective layers to stabilize the electrolyte-anode interface in solid-state Li-metal batteries[J]. Nano Energy, 2022, 102: 107640.
[42] Guo Q Y, Xu F L, Shen L, Deng S G, Wang Z Y, Li M Q, Yao X Y. 20 μm-thick Li6.4La3Zr1.4Ta0.6O12-based flexible solid electrolytes for all-solid-state lithium batteries[J]. Energy Mater. Adv., 2022: 9753506.
[43] Zhu L, Wang Y M, Wu Y M, Feng W L, Liu Z L, Tang W P, Wang X W, Xia Y Y. Boron nitride-based release agent coating stabilizes Li1.3Al0.3Ti1.7(PO4)3/Li interface with superior lean-lithium electrochemical performance and thermal stability[J]. Adv. Funct. Mater., 2022, 32(29): 2201136.
[44] Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/sulfide all-solid-state batteries using sulfide electroly-tes[J]. Adv. Mater., 2021, 33(6): 2000751.
[45] Nikodimos Y, Huang C J, Taklu B W, Su W N, Hwang B J. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy Environ. Sci., 2022, 15: 991-1033.
[46] Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Adv. Mater., 2019, 31(44): 1901131.
[47] Lee J, Lee T, Char K, Kim K J, Choi J W. Issues and advances in scaling up sulfide-based all-solid-state batteries[J]. Accounts. Chem. Res., 2021, 54(17): 3390-3402.
[48] Sun N, Song Y J, Liu Q S, Zhao W, Zhang F, Ren L P, Chen M, Zhou Z N, Xu Z H, Lou S F. Surface-to-bulk synergistic modification of single crystal cathode enables stable cycling of sulfide-based all-solid-state batteries at 4.4 V[J]. Adv. Energy Mater., 2022, 12(29): 2200682.
[49] Liang Y H, Liu H, Wang G X, Wang C, Ni Y, Nan C W, Fan L Z. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries[J]. InfoMat, 2022, 4(5): e12292.
文章导航

/