欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

紫外光引发原位交联多功能粘结剂构筑稳固硫正极

  • 李莎 ,
  • 湛孝 ,
  • 王顾莲 ,
  • 王慧群 ,
  • 熊伟明 ,
  • 张力
展开
  • a固体表面物理化学国家重点实验室,厦门大学化学化工学院,能源材料化学协同创新中心,嘉庚创新实验室,福建 厦门 361005,中国
    b山东大学化学与化工学院,胶体与界面化学教育部重点实验室,山东 济南 250100,中国

收稿日期: 2022-07-30

  修回日期: 2022-09-13

  录用日期: 2022-11-04

  网络出版日期: 2022-11-07

Ultraviolet-Initiated In-Situ Cross-Linking of Multifunctional Binder Backbones Enables Robust Lithium-Sulfur Batteries

  • Sha Li ,
  • Xiao Zhan ,
  • Gu-Lian Wang ,
  • Hui-Qun Wang ,
  • Wei-Ming Xiong ,
  • Li Zhang
Expand
  • aState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
    bKey Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
*Li Zhang, Tel: (86-592)2882622, E-mail: zhangli81@xmu.edu.cn
*Gu-Lian Wang: Tel: (86)15706291605, E-mail: 202120305@mail.sdu.edu.cn

Received date: 2022-07-30

  Revised date: 2022-09-13

  Accepted date: 2022-11-04

  Online published: 2022-11-07

摘要

锂硫电池因其高理论比容量和高能量密度的独特优势,在下一代储能体系中展现出重要的应用前景。然而,锂硫电池的商业化进程仍面临诸多挑战:如可溶性多硫化锂中间产物造成的“穿梭”问题、充放电过程中体积变化剧烈以及电极硫负载增大时的严重极化等,易导致硫正极的结构坍塌和电化学性能的快速衰变。电池作为一个有机整体,其性能优化是一个系统工程,上述挑战对电池内的每一个组分都提出了更高的要求,例如发展具有更好机械性能的新型粘结剂。在本工作中,我们首次在硫正极中引入乙氧基化三羟甲基丙烷三丙酸酯单体,通过紫外光辅助固化实现原位交联,并与传统聚偏氟乙烯粘结剂构成二元粘结剂(简称c-ETPTA/PVDF),用于制备高强度、高硫负载的长寿命锂硫电池。结果表明,采用共价交联的c-ETPTA/PVDF粘结剂不但能显著增强电极极片的机械性能,保持循环过程中的结构稳定性,还可借助其丰富的含氧官能团对溶解性多硫化锂中间产物进行高效地捕获。此外,c-ETPTA/PVDF中的醚氧键与锂离子之间适度的相互作用也有助于锂离子的快速输送。因此,S-c-ETPTA/PVDF电极在2 C倍率下可稳定循环1000次以上,且每个周期的容量衰减率仅为0.038%。即使当硫面载量提高至7.8 mgS·cm-2时,经过50个周期循环后,仍可输出6.2 mAh·cm-2的高平均放电面容量。本工作展示了紫外光引发原位交联技术在制备稳固的高能量密度锂硫电池方面的巨大应用前景。

本文引用格式

李莎 , 湛孝 , 王顾莲 , 王慧群 , 熊伟明 , 张力 . 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学, 2023 , 29(4) : 2217004 . DOI: 10.13208/j.electrochem.2217004

Abstract

Lithium-sulfur (Li-S) batteries show attractive prospects owing to their high theoretical energy density, but their commercialization still faces such challenges as lithium polysulfides shuttling, severe volume change and considerable polarization. These stubborn issues place higher demands on each component in the battery, such as the development of multifunctional binders with superior mechanical properties. Herein, ethoxylated trimethylolpropane triacrylate was firstly introduced into sulfur cathodes, and in-situ cross-linked by ultraviolet (UV) curing combined with traditional polyvinylidene difluoride binder (i.e., forming a binary binder, denoted as c-ETPTA/PVDF) to construct high-loading and durable Li-S batteries. The covalently cross-linked ETPTA framework not only significantly enhances the mechanical strength of the laminate, but also offers a strong chemical affinity for lithium polysulfides due to the abundant oxygen-containing groups. Moreover, the moderate interaction force between ether oxygen bonds and Li+ further accelerates the Li+ transport. As such, the S-c-ETPTA/PVDF electrode exhibited an ultralow attenuation rate of 0.038% at 2 C over 1000 cycles. Even under a sulfur loading of 7.8 mgS·cm-2, an average areal capacity of 6.2 mAh·cm-2 could be achieved after 50 cycles. This work indicates that light-assisted curing technology holds great promise in the fabrication of robust and high-energy-density Li-S batteries.

参考文献

[1] Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
[2] Li S, Cen Y, Xiang Q, Aslam M K, Hu B B, Li W, Tang Y, Yu Q, Liu Y P, Chen C G. Vanadium dioxide-reduced graphene oxide binary host as an efficient polysulfide plague for high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2019, 7(4): 1658-1668.
[3] Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
[4] Zhang L, Qian T, Zhu X Y, Hu Z L, Wang M F, Zhang L Y, Jiang T, Tian J H, Yan C L. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries[J]. Chem. Soc. Rev., 2019, 48(22): 5432-5453.
[5] Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.
[6] Li S, Xu P, Aslam M K, Chen C G, Rashid A, Wang G L, Zhang L, Mao B W. Propelling polysulfide conversion for high-loading lithium-sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes[J]. Energy Storage Mater., 2020, 27: 51-60.
[7] Wang N N, Zhang X, Ju Z Y, Yu X W, Wang Y X, Du Y, Bai Z C, Dou S X, Yu G H. Thickness-independent scalable high-performance Li-S batteries with high areal sulfur loading via electron-enriched carbon framework[J]. Nat. Commun., 2021, 12(1): 4519-4528.
[8] Song Y Z, Zhao W, Kong L, Zhang L, Zhu X Y, Shao Y L, Ding F, Zhang Q, Sun J Y, Liu Z F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries[J]. Energy Environ. Sci., 2018, 11(9): 2620-2630.
[9] Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
[10] Li Y J, Lin S Y, Wang D D, Gao T T, Song J W, Zhou P, Xu Z K, Yang Z H, Xiao N, Guo S J. Single atom array mimic on ultrathin mof nanosheets boosts the safety and life of lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(8): 1906722-1906731.
[11] Li S, Lin J D, Ding Y, Xu P, Guo X Y, Xiong W M, Wu D Y, Dong Q F, Chen J J, Zhang L. Defects engineering of lightweight metal-organic frameworks-based electrocatalytic membrane for high-loading lithium-sulfur batteries[J]. ACS Nano, 2021, 15(8): 13803-13813.
[12] Xu S N, Zhao T, Wang L L, Huang Y X, Ye Y S, Zhang N X, Feng T, Li L, Wu F, Chen R J. Endoplasmic-reticulum-like catalyst coating on separator to enhance polysulfides conversion for lithium-sulfur batteries[J]. J. Energy Chem., 2022, 67: 423-431.
[13] Fan X X, Yuan R M, Lei J, Lin X D, Xu P, Cui X Y, Cao L, Zheng M S, Dong Q F. Turning soluble polysulfide intermediates back into solid state by a molecule binder in Li-S batteries[J]. ACS Nano, 2020, 14(11): 15884-15893.
[14] Pei F, Dai S Q, Guo B F, Xie H, Zhao C W, Cui J Q, Fang X L, Chen C M, Zheng N F. Titanium-oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities[J]. Energy Environ. Sci., 2021, 14(2): 975-985.
[15] Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat. Rev. Mater., 2017, 2(4): 16103-16118.
[16] Gu Y, Wang W W, Li Y J, Wu Q H, Tang S, Yan J W, Zheng M S, Wu D Y, Fan C H, Hu W Q, Chen Z B, Fang Y, Zhang Q H, Dong Q F, Mao B W. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nat. Commun., 2018, 9: 1339-1347.
[17] Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): 4372-4379.
[18] Seh Z W, Zhang Q F, Li W Y, Zheng G Y, Yao H B, Cui Y. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder[J]. Chem. Sci., 2013, 4(9): 3673-3677.
[19] Liu J, Galpaya D G D, Yan L J, Sun M H, Lin Z, Yan C, Liang C D, Zhang S Q. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery[J]. Energy Environ. Sci., 2017, 10(3): 750-755.
[20] Zhang H, Hu X H, Zhang Y, Wang S Y, Xin F, Chen X D, Yu D S. 3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries[J]. Energy Storage Mater., 2019, 17: 293-299.
[21] Huang X, Luo B, Knibbe R, Hu H, Lyu M Q, Xiao M, Sun D, Wang S C, Wang L Z. An integrated strategy towards enhanced performance of the lithium-sulfur battery and its fading mechanism[J]. Chem.-Eur. J., 2018, 24(69): 18544-18550.
[22] Yuan J J, Huang Z, Song Y Z, Li M Y, Fang L F, Zhu B K, Li H Y. In-situ crosslinked binder for high-stability S cathodes with greatly enhanced conduction and polysulfides anchoring[J]. Chem. Eng. J., 2021, 426: 128705-128714.
[23] Fan W, Zhang X L, Li C J, Zhao S Y, Wang J. UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-Metal battery[J]. ACS Appl. Energ. Mater., 2019, 2(6): 4513-4520.
[24] Luo Z, Xu Y, Gong C R, Zheng Y Q, Zhou Z X, Yu L M. An ultraviolet curable silicon/graphite electrode binder for long-cycling lithium ion batteries[J]. J. Power Sources, 2021, 485: 229348-229355.
[25] Ma C, Feng Y M, Liu X J, Yang Y, Zhou L J, Chen L B, Yan C L, Wei W F. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries[J]. Energy Storage Mater., 2020, 32: 46-54.
[26] Yu Z S, Liu M L, Guo D Y, Wang J H, Chen X, Li J, Jin H L, Yang Z, Chen X A, Wang S. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2020, 59(16): 6406-6411.
[27] Luo D, Li C J, Zhang Y G, Ma Q Y, Ma C Y, Nie Y H, Li M, Weng X F, Huang R, Zhao Y, Shui L L, Wang X, Chen Z W. Design of quasi-mof nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(2): 2105541-2105550.
[28] Lei J, Fan X X, Liu T, Xu P, Hou Q, Li K, Yuan R M, Zheng M S, Dong Q F, Chen J J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries[J]. Nat. Commun., 2022, 13(1): 202-211.
[29] Zhang B, Qin X, Li G R, Li G R, Gao X P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy Environ. Sci., 2010, 3(10): 1531-1537.
[30] Deng Z F, Zhang Z A, Lai Y Q, Liu J, Li J, Liu Y X. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading[J]. J Electrochem Soc, 2013, 160(4): A553-A558.
[31] Yin Z H, Pan S Y, Cheng Q, Zhang G Z, Yu X Y, Pan Z X, Rao H S, Zhong X H. Mild-method synthesised rGo-TiO2 as an effective polysulphide-barrier for lithium-sulphur batteries[J]. J. Alloy. Compd., 2020, 836: 155341-155349.
[32] Yao S S, Xue S K, Peng S H, Jing M X, Qian X Y, Shen X Q, Li T B, Wang Y H. Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium-sulfur batteries[J]. J. Mater. Sci.-Mater. Electron., 2018, 29(20): 17921-17930.
[33] Nandasiri M I, Camacho-Forero L E, Schwarz A M, Shutthanandan V, Thevuthasan S, Balbuena P B, Mueller K T, Murugesan V. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries[J]. Chem. Mat., 2017, 29(11): 4728-4737.
[34] Vorobeva K A, Eliseeva S N, Apraksin R V, Kamenskii M A, Tolstopjatova E G, Kondratiev V V. Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder[J]. J. Alloy. Compd., 2018, 766: 33-44.
[35] Chu Y, Chen N, Cui X M, Liu A M, Zhen L, Pan Q M. A multi-functional binder for high loading sulfur cathode[J]. J. Energy Chem., 2020, 46: 99-104.
[36] Wang H, Yang Y, Zheng P T, Wang Y Y, Ng S W, Chen Y K, Deng Y H, Zheng Z J, Wang C Y. Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries[J]. Chem. Eng. J., 2020, 395: 124981-124991.
[37] Luo X, Lu X B, Chen X D, Chen Y, Yu C Y, Su D W, Wang G X, Cui L F. A functional hyperbranched binder enabling ultra-stable sulfur cathode for high-performance lithium-sulfur battery[J]. J. Energy Chem., 2020, 50: 63-72.
[38] Kim S, Cho M, Lee Y. Saponin-containing multifunctional binder toward superior long-term cycling stability in Li-S batteries[J]. J. Mater. Chem. A, 2020, 8(20): 10419-10425.
[39] Yang C A, Du Q K, Li Z H, Ling M, Song X Y, Battaglia V, Chen X B, Liu G. In-situ covalent bonding of polysulfides with electrode binders in operando for lithium-sulfur batteries[J]. J. Power Sources, 2018, 402: 1-6.
[40] Rashid A, Zhu X Y, Wang G L, Ke C Z, Li S, Sun P F, Hu Z L, Zhang Q B, Zhang L. Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium-sulfur batteries[J]. J. Energy Chem., 2020, 49: 71-79.
[41] Wang H L, Ling M, Bai Y, Chen S, Yuan Y X, Liu G, Wu C, Wu F. Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries[J]. J. Mater. Chem. A, 2018, 6(16): 6959-6966.
文章导航

/