欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展

  • 侯廷政 ,
  • 陈翔 ,
  • 蒋璐 ,
  • 唐城
展开
  • 1.加利福尼亚大学伯克利分校材料科学与工程系,伯克利 加利福尼亚 94706,美国
    2.清华大学深圳国际研究生院,深圳 广东 518055, 中华人民共和国
    3.阿德莱德大学化学工程与先进材料学院,阿德莱德 南澳大利亚 5005,澳大利亚
    4.清华大学化学工程系,北京 100084,中华人民共和国

收稿日期: 2022-09-11

  修回日期: 2022-10-10

  网络出版日期: 2022-11-04

Advances and Atomistic Insights of Electrolytes for Lithium-Ion Batteries and Beyond

  • Tingzheng Hou ,
  • Xiang Chen ,
  • Lu Jiang ,
  • Cheng Tang
Expand
  • 1. Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
    2. Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
    3. School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
    4. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
* Tingzheng Hou: +1-5109938393; E-mail: tingzheng_hou@berkeley.edu (T. Hou),
Cheng Tang: 86-10-62789041, E-mail: cheng.tang@adelaide.edu.au (C. Tang)

Received date: 2022-09-11

  Revised date: 2022-10-10

  Online published: 2022-11-04

摘要

电解液及构筑电极电解液界面对于开发和应用高比容量储能系统至关重要。具体来说,电解液的机械(抗压性、粘度)、热(热导率和热容)、化学(溶解性、活度、反应性)、输运和电化学(界面及界面层)等性质,与其所组成的储能器件的性能直接相关。目前,大量的实验研究通过调控电解液的物理和/或化学组成来改善电解液性能,以满足新型电极材料的工作运行。与此同时,理论模拟方法近年来得到了迅速发展,使人们可以从原子尺度来理解电解液在控制离子输运和构筑功能化界面的作用。站在理论模拟研究的前沿上,人们可以利用其所揭示的机理性认识对新型电解液开展理性设计。本文首先总结了传统电解液的组成、溶剂化结构和输运性质以及电极电解液界面层的形成机理,进一步讨论了利用新型电解液设计稳定电极电解液界面层的方法,包括使用电解液添加剂、高浓电解液和固态电解质,并着重讨论了对这些新型电解液体系进行原子尺度模拟的最新进展,为了解和认识电解液提供更为基本的理解,并为未来电解液的设计提供系统的指导。最后,作者对新型电解液的理论筛选进行了展望。

本文引用格式

侯廷政 , 陈翔 , 蒋璐 , 唐城 . 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学, 2022 , 28(11) : 2219007 . DOI: 10.13208/j.electrochem.2219007

Abstract

Electrolytes and the associated electrode-electrolyte interfaces are crucial for the development and application of high-capacity energy storage systems. Specifically, a variety of electrolyte properties, ranging from mechanical (compressibility, viscosity), thermal (heat conductivity and capacity), to chemical (solubility, activity, reactivity), transport, and electrochemical (interfacial and interphasial), are correlated to the performance of the resultant full energy storage device. In order to facilitate the operation of novel electrode materials, extensive experimental efforts have been devoted to improving these electrolyte properties by tuning the physical design and/or chemical composition. Meanwhile, the recent development of theoretical modeling methods is providing atomistic understandings of the electrolyte’s role in regulating the ion transport and enabling a functional interface. In this regard, we stand at a new frontier to take advantage of the revealed mechanistic insights into rationally design novel electrolyte systems. In this review, we first summarize the composition, solvation structure, and transport properties of conventional electrolytes as well as the formation mechanism of the electrode-electrolyte interphase. Moreover, some of the promising energy storage systems are briefly introduced. Further, approaches to stabilize the electrode-electrolyte interphase using novel electrolyte design, including electrolyte additives, high-concentration electrolytes, and solid-state electrolytes, are discussed. Some recent advances in the atomistic modeling of these aspects are particularly focused to provide a fundamental understanding of electrolytes and a comprehensive guide for future electrolyte design. Finally, we highlight the prospects of theoretical screening of novel electrolytes.

参考文献

[1] Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26(4): 443-463.
[2] Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium-sulfur batteries[J]. 2D Mater., 2015, 2(1): 014011.
[3] Lun Z, Ouyang B, Kwon D H, Ha Y, Foley E E, Huang T Y, Cai Z, Kim H, Balasubramanian M, Sun Y, Huang J, Tian Y, Kim H, McCloskey B D, Yang W, Clement R J, Ji H, Ceder G. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries[J]. Nat. Mater., 2021, 20(2): 214-221.
[4] Clément R J, Lun Z, Ceder G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes[J]. Energy Environ. Sci., 2020, 13(2): 345-373.
[5] Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
[6] Chen X, Li X, Mei D, Feng J, Hu M Y, Hu J, Engelhard M, Zheng J, Xu W, Xiao J, Liu J, Zhang J G. Reduction mechanism of fluoroethylene carbonate for stable solid-electrolyte interphase film on silicon anode[J]. ChemSus-Chem, 2014, 7(2): 549-554.
[7] Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat. Nanotechnol., 2017, 12(3): 194-206.
[8] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev., 2004, 104(10): 4303-4418.
[9] Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
[10] Schroder K, Alvarado J, Yersak T A, Li J, Dudney N, Webb L J, Meng Y S, Stevenson K J. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chem. Mater., 2015, 27(16): 5531-5542.
[11] Cheng X B, Yan C, Chen X, Guan C, Huang J Q, Peng H J, Zhang R, Yang S T, Zhang Q. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270.
[12] Hou T, Yang G, Rajput N N, Self J, Park S W, Nanda J, Persson K A. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation[J]. Nano Energy, 2019, 64: 103881.
[13] Blau S M, Patel H D, Spotte-Smith E W C, Xie X, Dwaraknath S, Persson K A. A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation[J]. Chem. Sci., 2021, 12(13): 4931-4939.
[14] Shi S Q, Lu P, Liu Z Y, Qi Y, Hector L G, Li H, Harris S J. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. J. Am. Chem. Soc., 2012, 134(37): 15476-15487.
[15] Shi S, Qi Y, Li H, Hector L G. Defect thermodynamics and diffusion mechanisms in Li2Co3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. J. Phys. Chem. C, 2013, 117(17): 8579-8593.
[16] Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metal anodes[J]. J. Electrochem. Soc., 1995, 142(9): 2873-2882.
[17] Xu K, Lam Y, Zhang S S, Jow T R, Curtis T B. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry[J]. J. Phys. Chem. C, 2007, 111(20): 7411-7421.
[18] Wang L, Menakath A, Han F, Wang Y, Zavalij P Y, Gaskell K J, Borodin O, Iuga D, Brown S P, Wang C, Xu K, Eichhorn B W. Identifying the components of the solid-electrolyte interphase in Li-ion batteries[J]. Nat. Chem., 2019, 11(9): 789-796.
[19] Seo D M, Chalasani D, Parimalam B S, Kadam R, Nie M, Lucht B L. Reduction reactions of carbonate solvents for lithium ion batteries[J]. ECS Electrochem. Lett., 2014, 3(9): A91-A93.
[20] Philippe B, Dedryvère R, Gorgoi M, Rensmo H, Gonbeau D, Edstr?m K. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries — a photoelectron spectroscopy study[J]. Chem. Mater., 2013, 25(3): 394-404.
[21] Yoon T, Milien M S, Parimalam B S, Lucht B L. Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries[J]. Chem. Mater., 2017, 29(7): 3237-3245.
[22] Parimalam B S, MacIntosh A D, Kadam R, Lucht B L. Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6[J]. J. Phys. Chem. C, 2017, 121(41): 22733-22738.
[23] Jurng S, Brown Z L, Kim J, Lucht B L. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes[J]. Energy Environ. Sci., 2018, 11(9): 2600-2608.
[24] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy Environ. Sci., 2011, 4(9): 3243.
[25] Galushkin N E, Yazvinskaya N N, Galushkin D N. Mec-hanism of gases generation during lithium-ion batteries cycling[J]. J. Electrochem. Soc., 2019, 166(6): A897-A908.
[26] Hou T, Fong K D, Wang J, Persson K A. The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries[J]. Chem. Sci., 2021, 12(44): 14740-14751.
[27] Liang C, Kwak K, Cho M. Revealing the solvation structure and dynamics of carbonate electrolytes in lithium-ion batteries by two-dimensional infrared spectrum modeling[J]. J. Phys. Chem. Lett., 2017, 8(23): 5779-5784.
[28] Seo D M, Reininger S, Kutcher M, Redmond K, Euler W B, Lucht B L. Role of mixed solvation and ion pairing in the solution structure of lithium ion battery electrolytes[J]. J. Phys. Chem. C, 2015, 119(25): 14038-14046.
[29] Pekarek R T, Affolter A, Baranowski L L, Coyle J, Hou T, Sivonxay E, Smith B A, McAuliffe R D, Persson K A, Key B, Apblett C, Veith G M, Neale N R. Intrinsic chemical reactivity of solid-electrolyte interphase components in silicon-lithium alloy anode batteries probed by FTIR spectroscopy[J]. J. Mater. Chem. A, 2020, 8(16): 7897-7906.
[30] Giorgini M G, Futamatagawa K, Torii H, Musso M, Cerini S. Solvation structure around the Li+ ion in mixed cyclic/linear carbonate solutions unveiled by the Raman noncoincidence effect[J]. J. Phys. Chem. Lett., 2015, 6(16): 3296-3302.
[31] Allen J L, Borodin O, Seo D M, Henderson W A. Combined quantum chemical/raman spectroscopic analyses of Li+ cation solvation: cyclic carbonate solvents—ethylene carbonate and propylene carbonate[J]. J. Power Sources, 2014, 267: 821-830.
[32] Su C C, He M, Amine R, Rojas T, Cheng L, Ngo A T, Amine K. Solvating power series of electrolyte solvents for lithium batteries[J]. Energy Environ. Sci., 2019, 12(4): 1249-1254.
[33] Su C C, He M, Amine R, Chen Z, Amine K. The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2018, 57(37): 12033-12036.
[34] Borodin O, Olguin M, Ganesh P, Kent P R, Allen J L, Henderson W A. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry[J]. Phys. Chem. Chem. Phys., 2016, 18(1): 164-175.
[35] Zhang X, Kuroda D G. An Ab initio molecular dynamics study of the solvation structure and ultrafast dynamics of lithium salts in organic carbonates: a comparison between linear and cyclic carbonates[J]. J. Chem. Phys., 2019, 150(18): 184501.
[36] Tang Z K, Tse J S, Liu L M. Unusual Li-ion transfer mechanism in liquid electrolytes: a first-principles study[J]. J. Phys. Chem. Lett., 2016, 7(22): 4795-4801.
[37] Skarmoutsos I, Ponnuchamy V, Vetere V, Mossa S. Li+ solvation in pure, binary, and ternary mixtures of organic carbonate electrolytes[J]. J. Phys. Chem. C, 2015, 119(9): 4502-4515.
[38] Vatamanu J, Borodin O, Smith G D. Molecular dynamics simulation studies of the structure of a mixed carbonate/LiPF6 electrolyte near graphite surface as a function of electrode potential[J]. J. Phys. Chem. C, 2011, 116(1): 1114-1121.
[39] Boyer M J, Vilciauskas L, Hwang G S. Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study[J]. Phys. Chem. Chem. Phys., 2016, 18(40): 27868-27876.
[40] Shim Y. Computer simulation study of the solvation of lithium ions in ternary mixed carbonate electrolytes: free energetics, dynamics, and ion transport[J]. Phys. Chem. Chem. Phys., 2018, 20(45): 28649-28657.
[41] Yao N, Chen X, Shen X, Zhang R, Fu Z H, Ma X X, Zhang X Q, Li B Q, Zhang Q. An atomic insight into the chemical origin and variation of the dielectric constant in liquid electrolytes[J]. Angew. Chem. Int. Ed., 2021, 60(39): 21473-21478.
[42] Tenney C M, Cygan R T. Analysis of molecular clusters in simulations of lithium-ion battery electrolytes[J]. J. Phys. Chem. C, 2013, 117(47): 24673-24684.
[43] Liu H, Maginn E. A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-N-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide[J]. J. Chem. Phys., 2011, 135(12): 124507.
[44] Fong K D, Self J, Diederichsen K M, Wood B M, McCloskey B D, Persson K A. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries[J]. ACS Cent. Sci., 2019, 5(7): 1250-1260.
[45] Fong K D, Bergstrom H K, McCloskey B D, Mandadapu K K. Transport phenomena in electrolyte solutions: nonequilibrium thermodynamics and statistical mechanics[J]. AICHE J., 2020, 66(12): e17091.
[46] Fong K D, Self J, McCloskey B D, Persson K A. Onsager transport coefficients and transference numbers in polyelectrolyte solutions and polymerized ionic liquids[J]. Macromolecules, 2020, 53(21): 9503-9512.
[47] Ringsby A J, Fong K D, Self J, Bergstrom H K, McCloskey B D, Persson K A. Transport phenomena in low temperature lithium-ion battery electrolytes[J]. J. Electro-chem. Soc., 2021, 168(8): 080501.
[48] Fong K D, Self J, McCloskey B D, Persson K A. Ion correlations and their impact on transport in polymer-based electrolytes[J]. Macromolecules, 2021, 54(6): 2575-2591.
[49] Spotte-Smith E W C, Kam R L, Barter D, Xie X, Hou T, Dwaraknath S, Blau S M, Persson K A. Toward a mechanistic model of solid-electrolyte interphase formation and evolution in lithium-ion batteries[J]. ACS Energy Lett., 2022, 7(4): 1446-1453.
[50] Graetz J, Ahn C C, Yazami R, Fultz B. Highly reversible lithium storage in nanostructured silicon[J]. Electrochem. Solid-State Lett., 2003, 6(9): A194-A197.
[51] Schweidler S, de Biasi L, Schiele A, Hartmann P, Breze-sinski T, Janek J. Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study[J]. J. Phys. Chem. C, 2018, 122(16): 8829-8835.
[52] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. J. Phys. Chem. C, 2014, 114(23): 11503-11618.
[53] Chen X, Shen X, Li B, Peng H J, Cheng X B, Li B Q, Zhang X Q, Huang J Q, Zhang Q. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode[J]. Angew. Chem. Int. Ed., 2018, 57(3): 734-737.
[54] Zhang X Q, Chen X, Cheng X B, Li B Q, Shen X, Yan C, Huang J Q, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5301-5305.
[55] Nguyen C C, Lucht B L. Comparative study of fluoroe-thylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries[J]. J. Electrochem. Soc., 2014, 161(12): A1933-A1938.
[56] Philippe B, Dedryvere R, Gorgoi M, Rensmo H, Gonbeau D, Edstrom K. Improved performances of nanosilicon electrodes using the salt LiFSI: A photoelectron spectroscopy study[J]. J. Am. Chem. Soc., 2013, 135(26): 9829-9842.
[57] Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
[58] Sun Y M, Liu N A, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nat. Energy, 2016, 1(7): 16071.
[59] Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V, Liu J, Zhang J G. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. J. Am. Chem. Soc., 2013, 135(11): 4450-4456.
[60] Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Adv. Funct. Mater., 2017, 27(10): 1605989.
[61] Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. High rate and stable cycling of lithium metal anode[J]. Nat. Commun., 2015, 6: 6362.
[62] Xia Y, Zheng J M, Wang C M, Gu M. Designing principle for Ni-rich cathode materials with high energy density for practical applications[J]. Nano Energy, 2018, 49: 434-452.
[63] Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. Lithium bond chemistry in lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2017, 56(28): 8178-8182.
[64] Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Design principles for heteroatom-doped nano-carbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(24): 3283-3291.
[65] Rajput N N, Murugesan V, Shin Y, Han K S, Lau K C, Chen J, Liu J, Curtiss L A, Mueller K T, Persson K A. Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions[J]. Chem. Mater., 2017, 29(8): 3375-3379.
[66] Borodin O, Self J, Persson K A, Wang C, Xu K. Uncharted waters: super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69-100.
[67] Shkrob I A, Wishart J F, Abraham D P. What makes fluoroethylene carbonate different?[J]. J. Phys. Chem. C, 2015, 119(27): 14954-14964.
[68] Xu C, Lindgren F, Philippe B, Gorgoi M, Bj?refors F, Edstr?m K, Gustafsson T. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive[J]. Chem. Mater., 2015, 27(7): 2591-2599.
[69] Sina M, Alvarado J, Shobukawa H, Alexander C, Manich-ev V, Feldman L, Gustafsson T, Stevenson K J, Meng Y /S. Direct visualization of the solid electrolyte interphase and its effects on silicon electrochemical performance[J]. Adv. Mater. Interfaces, 2016, 3(20): 1600438.
[70] Shi F, Ross P N, Somorjai G A, Komvopoulos K. The chemistry of electrolyte reduction on silicon electrodes revealed by in situ ATR-FTIR spectroscopy[J]. J. Phys. Chem. C, 2017, 121(27): 14476-14483.
[71] Schroder K W, Celio H, Webb L J, Stevenson K J. Examining solid electrolyte interphase formation on crystalline silicon electrodes: influence of electrochemical preparation and ambient exposure conditions[J]. J. Phys. Chem. C, 2012, 116(37): 19737-19747.
[72] Breitung B, Baumann P, Sommer H, Janek J, Brezesinski T. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries[J]. Nanoscale, 2016, 8(29): 14048-14056.
[73] Yoon I, Abraham D P, Lucht B L, Bower A F, Guduru P R. In situ measurement of solid electrolyte interphase evolution on silicon anodes using atomic force microscopy[J]. Adv. Energy Mater., 2016, 6(12): 1600099.
[74] Young B T, Heskett D R, Nguyen C C, Nie M, Woicik J C, Lucht B L. Hard X-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase (SEI) in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7(36): 20004-20011.
[75] Jin Y, Kneusels N H, Magusin P, Kim G, Castillo-Martinez E, Marbella L E, Kerber R N, Howe D J, Paul S, Liu T, Grey C P. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate[J]. J. Am. Chem. Soc., 2017, 139(42): 14992-15004.
[76] Schiele A, Breitung B, Hatsukade T, Berkes B B, Hartmann P, Janek J, Brezesinski T. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Lett., 2017, 2(10): 2228-2233.
[77] Zhang Y Y, Su M, Yu X F, Zhou Y F, Wang J G, Cao R G, Xu W, Wang C M, Baer D R, Borodin O, Xu K, Wang Y T, Wang X L, Xu Z J, Wang F Y, Zhu Z H. Investigation of ion-solvent interactions in nonaqueous electrolytes using in situ liquid SIMS[J]. Anal. Chem., 2018, 90(5): 3341-3348.
[78] Stetson C, Yoon T, Coyle J, Nemeth W, Young M, Norman A, Pylypenko S, Ban C, Jiang C S, Al-Jassim M, Burrell A. Three-dimensional electronic resistivity mapping of solid electrolyte interphase on Si anode materials[J]. Nano Energy, 2019, 55: 477-485.
[79] Shobukawa H, Alvarado J, Yang Y, Meng Y S. Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell[J]. J. Power Sources, 2017, 359: 173-181.
[80] He J, Wang H P, Zhou Q, Qi S H, Wu M G, Li F, Hu W, Ma J M. Unveiling the role of Li+ solvation structures with commercial carbonates in the formation of solid electrolyte interphase for lithium metal batteries[J]. Small Methods, 2021, 5(8): e2100441.
[81] Yamada Y, Yamada A. Review—superconcentrated ele-ctrolytes for lithium batteries[J]. J. Electrochem. Soc., 2015, 162(14): A2406-A2423.
[82] Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nat. Energy, 2019, 4(4): 269-280.
[83] Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.
[84] Borodin O, Suo L M, Gobet M, Ren X M, Wang F, Faraone A, Peng J, Olguin M, Schroeder M, Ding M S, Gobrogge E, Cresce A V, Munoz S, Dura J A, Greenbaum S, Wang C S, Xu K. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes[J]. ACS Nano, 2017, 11(10): 10462-10471.
[85] Self J, Fong K D, Persson K A. Transport in superconcen-trated LiPF6 and LiBF4/propylene carbonate electrolytes[J]. ACS Energy Lett., 2019, 4(12): 2843-2849.
[86] Cao X, Jia H, Xu W, Zhang J G. Review—localized high-concentration electrolytes for lithium batteries[J]. J. Electrochem. Soc., 2021, 168(1): 010522.
[87] Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv. Mater., 2018, 30(21): 1706102.
[88] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew. Chem. Int. Ed., 2007, 46(41): 7778-7781.
[89] Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ion., 2016, 286: 24-33.
[90] Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G Y. Ionic conductivity of the lithium titanium phosphate?(Li1+xMXTi2-x(PO4)3, M = Al, Sc, Y, and La) systems[J]. J. Electrochem. Soc., 2019, 136(2): 590-591.
[91] Luo W, Gong Y H, Zhu Y Z, Li Y J, Yao Y G, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y F, Wachsman E D, Hu L B. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Adv. Mater., 2017, 29(22): 1606042.
[92] Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. In-situ formed Li2Co3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119-125.
[93] Qin K, Holguin K, Mohammadiroudbari M, Huang J, Kim E Y S, Hall R, Luo C. Strategies in structure and electrolyte design for high-performance lithium metal batteries[J]. Adv. Funct. Mater., 2021, 31(15): 2009694.
[94] Brissot C, Rosso M, Chazalviel J N, Lascaud S. Dendritic growth mechanisms in lithium/polymer cells[J]. J. Power Sources, 1999, 81-82: 925-929.
[95] Singh M, Odusanya O, Wilmes G M, Eitouni H B, Gomez E D, Patel A J, Chen V L, Park M J, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N P. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes[J]. Macromolecules, 2007, 40(13): 4578-4585.
[96] Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J P, Phan T N, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nat. Mater., 2013, 12(5): 452-457.
[97] Zhou W D, Wang Z X, Pu Y, Li Y T, Xin S, Li X F, Chen J F, Goodenough J B. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Adv. Mater., 2019, 31(4): 1805574.
[98] Stone G M, Mullin S A, Teran A A, Hallinan D T, Minor A M, Hexemer A, Balsara N P. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries[J]. J. Electrochem. Soc., 2012, 159(3): A222-A227.
[99] Duan H, Fan M, Chen W P, Li J Y, Wang P F, Wang W P, Shi J L, Yin Y X, Wan L J, Guo Y G. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Adv. Mater., 2019, 31(12): 1807789.
[100] Cheng Q, Li A J, Li N, Li S, Zangiabadi A, Li T D, Huang W L, Li A C, Jin T W, Song Q Q, Xu W H, Ni N, Zhai H W, Dontigny M, Zaghib K, Chuan X Y, Su D, Yan K, Yang Y. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule, 2019, 3(6): 1510-1522.
[101] Liu W, Liu N, Sun J, Hsu P C, Li Y, Lee H W, Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745.
[102] Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. J. Am. Chem. Soc., 2016, 138(30): 9385-9388.
[103] Zhao C Z, Zhang X Q, Cheng X B, Zhang R, Xu R, Chen P Y, Peng H J, Huang J Q, Zhang Q. An anion-immoblized composite electrolyte for dendrite-free lithium metal anodes[J]. Proc. Natl. Acad. Sci. U.S.A, 2017, 114(42): 11069-11074.
[104] Judez X, Martinez-Iba?ez M, Santiago A, Armand M, Zhang H, Li C M. Quasi-solid-state electrolytes for lithium sulfur batteries: advances and perspectives[J]. J. Power Sources, 2019, 438: 226985.
[105] Xu W, Pei X, Diercks C S, Lyu H, Ji Z, Yaghi O M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte[J]. J. Am. Chem. Soc., 2019, 141(44): 17522-17526.
[106] Cronau M, Szabo M, K?nig C, Wassermann T B, Roling B. How to measure a reliable ionic conductivity? The stack pressure dilemma of microcrystalline sulfide-based solid electrolytes[J]. ACS Energy Lett., 2021, 6(9): 3072-3077.
[107] Winand J M, Depireux J. Measurement of ionic conductivity in solid electrolytes[J]. Europhys. Lett., 1989, 8(5): 447-452.
[108] Hou T, Xu W, Pei X, Jiang L, Yaghi O M, Persson K A. Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes[J]. J. Am. Chem. Soc., 2022, 144(30): 13446-13450.
[109] Yang G, Ivanov I N, Ruther R E, Sacci R L, Subjakova V, Hallinan D T, Nanda J. Electrolyte solvation structure at solid-liquid interface probed by nanogap surface-enhanced Raman spectroscopy[J]. ACS Nano, 2018, 12(10): 10159-10170.
[110] Nanda J, Yang G, Hou T, Voylov D N, Li X, Ruther R E, Naguib M, Persson K, Veith G M, Sokolov A P. Unraveling the nanoscale heterogeneity of solid electrolyte interphase using tip-enhanced Raman spectroscopy[J]. Joule, 2019, 3(8): 2001-2019.
[111] Chen X, Zhang Q. Atomic insights into the fundamental interactions in lithium battery electrolytes[J]. Acc. Chem. Res., 2020, 53(9): 1992-2002.
[112] Yao N, Chen X, Fu Z H, Zhang Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries[J]. Chem. Rev., 2022, 122(12): 10970-11021.
文章导航

/