CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜
收稿日期: 2022-07-20
修回日期: 2022-08-01
录用日期: 2022-10-25
网络出版日期: 2022-10-31
CoNi-based Bimetal-organic Framework Derived Carbon Composites Multifunctionally Modified Separators for Lithium-Sulfur Batteries
#These authors contributed equally to this work.
Received date: 2022-07-20
Revised date: 2022-08-01
Accepted date: 2022-10-25
Online published: 2022-10-31
Supported by
Yunnan Fundamental Research Projects(Grant NO. 202001AU070079);Yunnan Fundamental Research Projects(202101BE070001-018);Yunnan Fundamental Research Projects(202101AT070214);Yunnan Fundamental Research Projects(202101AW070006);Yunnan ZhongYan Industry Co., Ltd. Science and Technology Project(2020GY03)
严重的多硫化物穿梭效应和转化缓慢等问题导致锂硫电池容量迅速衰减,其大规模应用受限。本文将金属有机框架材料(MOF)衍生碳(Ni,Co)/C用于锂硫电池隔膜改性,很好地解决了上述问题。钴镍双金属的协同作用分别实现了大量又快速的化学固硫和抑硫的可逆性,显著提高了锂硫电池的循环稳定性和倍率性能。在1 C的电流密度下,(Ni,Co)/C改性隔膜电池的容量在第1次循环时可以达到1035.6 mAh·g-1,在500次循环后容量仍保持662.2 mAh·g-1,容量保持率为63.9%。此外,本工作克服了二元金属基MOF制备难的问题,使用简单快速的室温液相合成法制备了柱状镍钴二元MOF,该法有望实现MOF的宏观制备。
王妍洁 , 程宏宇 , 侯冀岳 , 杨文豪 , 黄荣威 , 倪志聪 , 朱子翼 , 王颖 , 韦克毅 , 张义永 , 李雪 . CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学, 2023 , 29(3) : 2217002 . DOI: 10.13208/j.electrochem.2217002
The commercial application of lithium-sulfur batteries (LSB) is still limited by the irreversible capacity fading caused by the shuttle of lithium polysulfides (LIPS). To address this issue, a bimetal (nickel, cobalt)-organic framework (MOF) derived carbon, (Ni, Co)/C, was prepared to modify the separator. The multifunctionally modified separator effectively captures LIPS, ensuring the stability and reversibility of sulfur fixation, while providing catalytic activity and improving ionic conductivity. The cobalt metal has a larger coordination number, more pore structure distribution, larger specific surface area, more surface C=O, and smaller particle size to achieve a large and rapid chemical sulfur fixation. The high conductivity provided by nickel, and the catalytic activity and the ability to block LIPS shuttling enabled the reversibility of sulfur inhibition. The synergistic effect of cobalt-nickel bimetals significantly improves the cycling stability and rate capability of LSB. At a current density of 1 C, the capacity of the (Ni, Co)/C modified separator battery could reach 1035.6 mAh·g-1 in the first cycle, the capacity remained at 662.2 mAh·g-1 after 500 cycles, and the capacity retention rate was 63.9%.
[1] | Wei Z Z, Zhang N X, Wu F, Chen R J. Progress and prospects on multifunctional coating separators for lithium-sulfur battery[J]. J. Electrochem., 2020, 26(5): 716-730. |
[2] | Lin J X, Qu X M, Wu X H, Peng J, Zhou S Y, Li J T, Zhou Y, Mo Y X, Ding M J, Huang L, Sun S G. NiCo2O4/CNF separator modifiers for trapping and catalyzing polysulfides for high-performance lithium-sulfur batteries with high sulfur loadings and lean electrolytes[J]. ACS Sustainable Chem. Eng., 2021, 9(4): 1804-1813. |
[3] | Wu F, Ye Y S, Chen R J, Qian J, Zhao T, Li L, Li W H. Systematic effect for an ultralong cycle lithium-sulfur battery[J]. Nano Lett., 2015, 15(11): 7431-7439. |
[4] | Wu F, Qian J, Chen R J, Ye Y S, Sun Z G, Xing Y, Li L. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016, 4(43): 17033-17041. |
[5] | Ye Z Q, Jiang Y, Feng T, Wang Z H, Li L, Wu F, Chen R J. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries[J]. Nano Energy, 2020, 70: 104532. |
[6] | Wei L, Li W L, Zhao T, Zhang N X, Li L, Wu F, Chen R J. Cobalt nanoparticles shielded in N-doped carbon nanotubes for high areal capacity Li-S batteries[J]. Chem. Commun., 2020, 56(20): 3007-3010. |
[7] | Yao W Q, Tian C X, Yang C, Xu J, Meng Y F, Manke I, Chen N, Wu Z L, Zhan L, Wang Y L, Chen R J. P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion[J]. Adv. Mater., 2022, 34(11): 2106370. |
[8] | Li Z, Zhang F, Cao T, Tang L B, Xu Q J, Liu H M, Wang Y G. Highly stable lithium-sulfur batteries achieved by a SnS/porous carbon nanosheet architecture modified celgard separator[J]. Adv. Funct. Mater., 2020, 30(48): 2006297. |
[9] | Zuo Y Z, Zhu Y J, Tang X S, Zhao M, Ren P J, Su W M, Tang Y F, Chen Y F. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries[J]. J. Power Sources, 2020, 464: 228181. |
[10] | Kim S, Lim W G, Cho A, Jeong J, Jo C, Kang D G, Han S M, Han J W, Lee J. Simultaneous suppression of shuttle effect and Li dendrite growth by light-weight bifunctional separator for Li-S batteries[J]. ACS Appl. Energy Mater., 2020, 3(3): 2643-2652. |
[11] | Li W L, Qian J, Zhao T, Ye Y S, Xing Y, Huang Y X, Wei L, Zhang N X, Chen N, Li L, Wu F, Chen R J. Boosting high-rate Li-S Batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Adv. Sci., 2019, 6(16): 1802362. |
[12] | Ye Z Q, Jiang Y, Li L, Wu F, Chen R J. Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li-S batteries[J]. Chem. Eng. J., 2022, 430: 132734. |
[13] | Liu Y T, Liu S, Li G R, Gao X P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Adv. Mater., 2021, 8(33): 2003955. |
[14] | Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969-A1976. |
[15] | Xuan W M, Zhu C F, Liu Y, Cui Y. Mesoporous metal-organic framework materials[J]. Chem. Soc. Rev., 2012, 41(5): 1677-1695. |
[16] | Zheng J M, Tian J, Wu D X, Gu M, Xu W, Wang C M, Gao F, Engelhard M H, Zhang J G, Liu J, Xiao J. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Lett., 2014, 14(5): 2345-2352. |
[17] | Sun L, Campbell M G, Dinca M. Electrically conductive porous metal-organic frameworks[J]. Angew. Chem., Int. Ed., 2016, 55(11): 3566-3579. |
[18] | Zang Y, Pei F, Huang J H, Fu Z H, Xu G, Fang X L. Large-area preparation of crack‐free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(31): 1802052. |
[19] | Qi C, Xu L, Wang J, Li H L, Zhao C C, Wang L N, Liu T X. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries[J]. ACS Sustain. Chem. Eng., 2020, 8(34): 12968-12975. |
[20] | Li W L, Ye Y S, Qian J, Xing Y, Qu W, Zhang N X, Li L, Wu F, Chen R J. Oxygenated nitrogen‐doped microporous nanocarbon as a permselective interlayer for ultrastable lithium‐sulfur batteries[J]. ChemElectroChem, 2019, 6(4): 1094-1100. |
[21] | Zhang Z, Wang J N, Shao A H, Xiong D G, Liu J W, Lao C Y, Xi K, Lu S Y, Jiang Q, Yu J, Li H L, Yang Z Y, Kumar R V. Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery[J]. Sci. China Mater., 2020, 63(12): 2443-2455. |
[22] | Bauer I, Thieme S, Brueckner J, Althues H, Kaskel S. Reduced polysulfide shuttle in lithium-sulfur batteries using Nation-based separators[J]. J. Power Sources, 2014, 251: 417-422. |
[23] | Zhou J W, Li R, Fan X X, Chen Y F, Han R D, Li W, Zheng J, Wang B, Li X G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy Environ. Sci., 2014, 7(8): 2715-2724. |
[24] | Xu Y X, Zheng S S, Tang H F, Guo X T, Xue H G, Pang H. Prussian blue and its derivatives as electrode materials for electrochemical energy storage[J]. Energy Storage Mater., 2017, 9: 11-30. |
[25] | Wu X, Fan L S, Qiu Y, Wang M X, Cheng J H, Guan B, Guo Z K, Zhang N Q, Sun K N. Ion-selective prussian-blue-modified celgard separator for high-performance lithium-sulfur battery[J]. ChemSusChem, 2018, 11(18): 3345-3351. |
/
〈 |
|
〉 |