金属和合金作为锂-硫电池硫正极催化载体
收稿日期: 2022-07-12
修回日期: 2022-09-11
录用日期: 2022-10-04
网络出版日期: 2022-10-05
Metals and Alloys as Catalytic Hosts of Sulfur Cathode for Lithium-Sulfur Batteries
Received date: 2022-07-12
Revised date: 2022-09-11
Accepted date: 2022-10-04
Online published: 2022-10-05
锂-硫电池具有2600 Wh·kg-1的理论能量密度,被认为是最具发展潜力的下一代能量存储体系之一。然而,锂-硫电池的应用严重受制于单质硫和放电产物(Li2S2/Li2S)迟滞的电化学反应动力学以及可溶性多硫化锂中间体的“穿梭效应”,这些问题导致电池的循环稳定性差、硫利用率以及库仑效率低下。将催化载体引入硫正极,可加快锂-硫电池中含硫物种反应速率,进而抑制活性物质溶解流失。这篇综述简要总结了金属和合金材料作为硫正极核心催化载体的最新研究进展,同时阐明了金属及合金载体对含硫物种的催化转换机理,最后对催化载体的构筑以及高能锂-硫电池的发展进行了展望。
王振宇 , 高学平 . 金属和合金作为锂-硫电池硫正极催化载体[J]. 电化学, 2023 , 29(4) : 2217001 . DOI: 10.13208/j.electrochem.2217001
Lithium-sulfur batteries are recognized as one of the most promising next-generation energy storage devices, owing to the high theoretical energy density of 2600 Wh·kg-1. However, their application has been seriously hindered by the sluggish electrochemical reaction kinetics of elemental sulfur and discharged products (Li2S2/Li2S), and the notorious “shuttle effect” of soluble intermediate lithium polysulfide species, leading to poor cycle stability, low sulfur utilization and inferior coulombic efficiency. Introducing catalytic hosts into sulfur cathode is an efficient path to propel the conversion of sulfur-contained species, thus preventing the dissolution and loss of active-sulfur material in lithium-sulfur batteries. In this review, we summarize recent progresses on the uses of metals and alloys as the core catalytic host of sulfur, and demonstrate the catalytic mechanism in the conversion process of sulfur species with the help of metal and alloy hosts. Finally, future outlooks are proposed on the construction of catalytic hosts and the development of high-energy lithium-sulfur batteries.
Key words: Lithium-sulfur batteries; Metals/alloys; Catalytic hosts
[1] | Lu Y X, Rong X H, Hu Y S, Chen L Q, Li H. Research and development of advanced battery materials in China[J]. Energy Storage Mater., 2019, 23: 144-153. |
[2] | Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4): 16013. |
[3] | Zhang Z, Kong L L, Liu S, Li G R, Gao X P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery[J]. Adv. Energy Mater., 2017, 7(11): 1602543. |
[4] | Wang Z Y, Han D D, Liu S, Li G R, Yan T Y, Gao X P. Conductive RuO2 stacking microspheres as an effective sulfur immobilizer for lithium-sulfur battery[J]. Electrochim. Acta, 2020, 337(20): 135772. |
[5] | Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E. Lithium sulfur battery-oxidation reduction-mechanisms of polysulphides in THF solutions[J]. J. Electrochem. Soc., 1988, 135(5): 1045-1048. |
[6] | Yin Y X, Xin S, Guo Y G, Wang L J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angew. Chem. Int. Ed., 2013, 52(50): 13186-13200. |
[7] | Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts Chem. Res., 2013, 46(5): 1135-1143. |
[8] | Wang J, Chew S Y, Zhao Z W, Ashraf S, Wexler D, Chen J, Ng S H, Chou S L, Liu H K. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries[J]. Carbon, 2008, 46(2): 229-235. |
[9] | Jayaprakash N, Shen J, Moganty S S, Corona A, Archer L A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem. Int. Edit., 2011, 50(26): 5904-5908. |
[10] | Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell[J]. J. Power Sources, 1983, 9(3): 281-287. |
[11] | Gao R, Wang Z Y, Liu S, Shao G J, Gao X P. Metal phosphides and borides as the catalytic host of sulfur cathode for lithium-sulfur batteries[J]. Int. J. Miner., Metall. Mater., 2022, 29(5): 990-1002. |
[12] | Conder J, Bouchet R, Trabesinger S, Marino C, Gubler L, Villevieille C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction[J]. Nat. Energy, 2017, 2(6): 17069. |
[13] | Rauh R D, Shuker F S, Marston J M, Brummer S B. Formation of lithium polysulfides in aprotic media[J]. J. Inorg. Nucl. Chem., 1977, 39(10): 1761-1766. |
[14] | Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities[J]. Angew. Chem. Int. Edit., 2020, 59(31): 12636-12652. |
[15] | Hagen M, Hanselmann D, Ahlbrecht K, Maca R, Gerber D, Tubke J. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells[J]. Adv. Energy Mater., 2015, 5(16): 1401986. |
[16] | Bhargav A, He J R, Gupta A, Manthiram A. Lithium-sulfur batteries: attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291. |
[17] | Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506. |
[18] | Dai F, Shen J M, Dailly A, Balogh M P, Lu P, Yang L, Xiao J, Liu J, Cai M. Hierarchical electrode architectures for high energy lithium-chalcogen rechargeable batteries[J]. Nano Energy, 2018, 51: 668-679. |
[19] | Zhong Y, Xia X H, Deng S J, Zhan J Y, Fang R Y, Xia Y, Wang X L, Zhang Q, Tu J P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(1): 1701110. |
[20] | Gueon D, Hwang J T, Yang S B, Cho E, Sohn K, Yang D K, Moon J H. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano, 2018, 12(1): 226-233. |
[21] | Seh Z W, Sun Y M, Zhang Q F, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634. |
[22] | Peng H J, Hou T Z, Zhang Q, Huang J Q, Cheng X B, Guo M Q, Yuan Z, He L Y, Wei F. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation[J]. Adv. Mater. Interfaces, 2014, 1(7): 1400227. |
[23] | Yuan H D, Zhang W K, Wang J G, Zhou G M, Zhuang Z Z, Luo J M, Huang H, Gan Y P, Liang C, Xia Y, Zhang J, Tao X Y. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries[J]. Energy Storage Mater., 2018, 10: 1-9. |
[24] | Zhou X J, Tian J, Wu Q P, Hu J L, Li C L. N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries[J]. Energy Storage Mater., 2020, 24: 644-654. |
[25] | Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries[J]. Adv. Mater., 2019, 31(40): 1903955. |
[26] | Xie J, Li B Q, Peng H J, Song Y W, Zhao M, Chen X, Zhang Q, Huang J Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries[J]. Adv. Mater., 2019, 31(43): 1903813. |
[27] | Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985. |
[28] | Shao A H, Zhang Z, Xiong D G, Yu J, Cai J X, Yang Z Y. Facile synthesis of a “two-in-one” sulfur host featuring metallic-cobalt-embedded N-doped carbon nanotubes for efficient lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(5): 5968-5978. |
[29] | Zhu M Q, Li S M, Li B, Yang S B. A liquid metal-based self-adaptive sulfur-gallium composite for long-cycling lithium-sulfur batteries[J]. Nanoscale, 2019, 11(2): 412-417. |
[30] | Yom J H, Cho S M, Hwang S W, Yoon W Y. Effects of the Pd3Co nanoparticles-additive on the redox shuttle reaction in rechargeable Li-S batteries[J]. J. Electrochem. Soc., 2016, 163(10): A2179-A2184. |
[31] | Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nat. Commun., 2016, 7: 11203. |
[32] | Liu Y T, Liu S, Li G R, Gao X P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(8): 2003955. |
[33] | Wang Z Y, Wang L, Liu S, Li G R, Gao X P. Conductive CoOOH as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium-sulfur battery[J]. Adv. Funct. Mater., 2019, 29(23): 1901051. |
[34] | Liu M M, Zhang C C, Su J M, Chen X, Ma T Y, Huang T, Yu A S. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2019, 11(23): 20788-20795. |
[35] | Pan Y L, Gong L L, Cheng X D, Zhou Y, Fu Y B, Feng J, Ahmed H, Zhang H P. Layer-spacing-enlarged MoS2 superstructural nanotubes with further enhanced catalysis and immobilization for Li-S batteries[J]. ACS Nano, 2020, 14(5): 5917-5925. |
[36] | Yang X F, Gao X J, Sun Q, Jand S P, Yu Y, Zhao Y, Li X, Adair K, Kuo L Y, Rohrer J, Liang J N, Lin X T, Banis M N, Hu Y F, Zhang H Z, Li X F, Li R Y, Zhang H M, Kaghazchi P, Sham T K, Sun X L. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries[J]. Adv. Mater., 2019, 31(25): 1901220. |
[37] | Liao Y Q, Xiang J W, Yuan L X, Hao Z X, Gu J F, Chen X, Yuan K, Kalambate P K, Huang Y H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 37955-37962. |
[38] | Sun W W, Liu C, Li Y J, Luo S Q, Liu S K, Hong X B, Xie K, Liu Y M, Tan X J, Zheng C M. Rational construction of Fe2N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries[J]. ACS Nano, 2019, 13(10): 12137-12147. |
[39] | Jiang G S, Xu F, Yang S H, Wu J P, Wei B Q, Wang H Q. Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. J. Power Sources, 2018, 395: 77-84. |
[40] | Wang C H, Yang H C, Zhang Y J, Wang Q B. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity[J]. Angew. Chem. Int. Ed., 2019, 58(18): 6099-6103. |
[41] | Kong Z J, Maswadeh Y, Vargas J A, Shan S Y, Wu Z P, Kareem H, Leff A C, Tran D T, Chang F F, Yan S, Nam S, Zhao X F, Lee J M, Luo J, Shastri S, Yu G, Petkov V, Zhong C J. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions[J]. J. Am. Chem. Soc., 2020, 142(3): 1287-1299. |
[42] | Lim W G, Kim S, Jo C, Lee J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics[J]. Angew. Chem. Int. Edit., 2019, 58(52): 18746-18757. |
[43] | Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): 1700270. |
[44] | Wang P, Xi B J, Huang M, Chen W H, Feng J K, Xiong S L. Emerging catalysts to promote kinetics of lithium-sulfur batteries[J]. Adv. Energy Mater., 2021, 11(7): 2002893. |
[45] | Peng L L, Wei Z Y, Wan C Z, Li J, Chen Z, Zhu D, Baumann D, Liu H T, Allen C S, Xu X, Kirkland A I, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X F. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nat. Catal., 2020, 3(9): 762-770. |
[46] | Al Salem H, Babu G, Rao C V, Arava L M R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137(36): 11542-11545. |
[47] | He J R, Bhargav A, Manthiram A. High-energy-density, long-life lithium-sulfur batteries with practically necessary parameters enabled by low-cost Fe-Ni nanoalloy catalysts[J]. ACS Nano, 2021, 15(5): 8583-8591. |
[48] | Li H Y, Fei L F, Zhang R, Yu S L, Zhang Y Y, Shu L L, Li Y, Wang Y. FeCo alloy catalysts promoting polysulfide conversion for advanced lithium-sulfur batteries[J]. J. Energy Chem., 2020, 49: 339-347. |
[49] | Song X Q, Tian D, Qiu Y, Sun X, Jiang B, Zhao C H, Zhang Y, Fan L S, Zhang N Q. Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries[J]. Energy Storage Mater., 2021, 41: 248-254. |
[50] | Wang Z Y, Zhang B H, Liu S, Li G R, Yan T Y, Gao X P. Nickel-platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2022, 32(27): 2200893. |
[51] | Lin Z J, Li X, Huang W L, Zhu X, Wang Y, Shan Z Q. Active platinum nanoparticles as a bifunctional promoter for lithium-sulfur batteries[J]. ChemElectroChem, 2017, 4(10): 2577-2582. |
[52] | Liu Y, Kou W, Li X C, Huang C Q, Shui R B, He G H. Constructing patch-Ni-shelled Pt@Ni nanoparticles within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li-S batteries[J]. Small, 2019, 15(34): 1902431. |
[53] | Zhou G M, Yang A K, Gao G P, Yu X Y, Xu J W, Liu C W, Ye Y S, Pei A E, Wu Y C, Peng Y C, Li Y X, Liang Z, Liu K, Wang L W, Cui Y. Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries[J]. Sci. Adv., 2020, 6(21): eaay5098. |
[54] | Xing Z Y, Tan G Q, Yuan Y F, Wang B, Ma L, Xie J, Li Z S, Wu T P, Ren Y, Shahbazian-Yassar R, Lu J, Ji X L, Chen Z W. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes[J]. Adv. Mater., 2020, 32(31): 2002403. |
[55] | Wang H F, Chen L Y, Wang M, Liu Z, Xu Q. Hollow spherical superstructure of carbon nanosheets for bifunctional oxygen reduction and evolution electrocatalysis[J]. Nano Lett., 2021, 21(8): 3640-3648. |
[56] | Duan Y, Yu Z Y, Yang L, Zheng L R, Zhang C T, Yang X T, Gao F Y, Zhang X L, Yu X X, Liu R, Ding H H, Gu C, Zheng X S, Shi L, Jiang J, Zhu J F, Gao M R, Yu S H. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes[J]. Nat. Commun., 2020, 11(1): 4789. |
[57] | Qiao Z S, Zhou F, Zhang Q F, Pei F, Zheng H F, Xu W J, Liu P F, Ma Y T, Xie Q S, Wang L S, Fang X L, Peng D L. Chemisorption and electrocatalytic effect from CoxSny alloy for high performance lithium sulfur batteries[J]. Energy Storage Mater., 2019, 23: 62-71. |
[58] | Lim D, Oh E, Lim C, Shim S E, Baeck S H. Bimetallic NiFe alloys as highly efficient electrocatalysts for the oxygen evolution reaction[J]. Catal. Today, 2020, 352: 27-33. |
[59] | Zeng P, Liu C, Zhao X F, Yuan C, Chen Y G, Lin H P, Zhang L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries[J]. ACS Nano, 2020, 14(9): 11558-11569. |
[60] | Hu Y, Cheng C, Yan T R, Liu G L, Yuan C, Yan Y Y, Gu Z H, Zeng P, Zheng L R, Zhang J, Zhang L. Catalyzing polysulfide redox conversion for promoting the electrochemical performance of lithium-sulfur batteries by CoFe alloy[J]. Chem. Eng. J., 2021, 421: 129997. |
[61] | Zhang Z, Shao A H, Xiong D G, Yu J, Koratkar N, Yang Z Y. Efficient polysulfide redox enabled by lattice-distorted Ni3Fe intermetallic electrocatalyst-modified separator for lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(17): 19572-19580. |
[62] | Wang Z Y, Wang H M, Liu S, Li G R, Gao X P. To promote the catalytic conversion of polysulfides using Ni-B alloy nanoparticles on carbon nanotube microspheres under high sulfur loading and a lean electrolyte[J]. ACS Appl. Mater. Inter., 2021, 13(17): 20222-20232. |
[63] | Bueno S L A, Ashberry H M, Shafei I, Skrabalak S E. Building durable multimetallic electrocatalysts from intermetallic seeds[J]. Accounts Chem. Res., 2021, 54(7): 1662-1672. |
[64] | Xu X L, Zhang X, Sun H, Yang Y, Dai X P, Gao J S, Li X Y, Zhang P F, Wang H H, Yu N F, Sun S G. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties[J]. Angew. Chem. Int. Ed., 2014, 53(46): 12522-12527. |
[65] | Zhang P F, Dai X P, Zhang X, Chen Z K, Yang Y, Sun H, Wang X B, Wang H, Wang M L, Su H X, Li D, Li X S, Qin Y C. One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance[J]. Chem. Mat., 2015, 27(18): 6402-6410. |
[66] | Wang Y, Zhuo H Y, Sun H, Zhang X, Dai X P, Luan C L, Qin C L, Zhao H H, Li J, Wang M L, Ye J Y, Sun S G. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: promoting highly active sites for ethylene glycol oxidation[J]. ACS Catal., 2019, 9(1): 442-455. |
[67] | Lun Z Y, Ouyang B, Kwon D H, Ha Y, Foley E E, Huang T Y, Cai Z J, Kim H, Balasubramanian M, Sun Y Z, Huang J P, Tian Y S, Kim H, McCloskey B D, Yang W L, Clement R J, Ji H W, Ceder G. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries[J]. Nat. Mater., 2021, 20(2): 214-221. |
[68] | Li H N, Zhu H, Shen Q K, Huang S D, Lu S L, Ma P M, Dong W F, Du M L. A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts[J]. Chem. Commun., 2021, 57(21): 2637-2640. |
[69] | Jia Z, Yang T, Sun L G, Zhao Y L, Li W P, Luan J H, Lyu F C, Zhang L C, Kruzic J J, Kai J J, Huang J C, Lu J, Liu C T. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution[J]. Adv. Mater., 2020, 32(21): 2000385. |
[70] | Li H D, Han Y, Zhao H, Qi W J, Zhang D, Yu Y D, Cai W W, Li S X, Lai J P, Huang B L, Wang L. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis[J]. Nat. Commun., 2020, 11(1): 5437. |
[71] | Batchelor T A A, Pedersen J K, Winther S H, Castelli I E, Jacobsen K W, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis[J]. Joule, 2019, 3(3): 834-845. |
[72] | Yao Y G, Dong Q, Brozena A, Luo J, Miao J W, Chi M F, Wang C, Kevrekidis I G, Ren Z J, Greeley J, Wang G F, Anapolsky A, Hu L B. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): 151. |
[73] | Xu H F, Hu R M, Zhang Y Z, Yan H B, Zhu Q, Shang J X, Yang S B, Li B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries[J]. Energy Storage Mater., 2021, 43: 212-220. |
[74] | Wang Z Y, Ge H L, Liu S, Li G R, Gao X P. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J]. Energy Environ. Mater., 2022, DOI: 10.1002/eem2.12358. |
/
〈 |
|
〉 |