欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

无序Ru-O构型对电化学析氢催化性能研究

  • 孙雪 ,
  • 宋亚杰 ,
  • 李仁龙 ,
  • 王家钧
展开
  • 1.哈尔滨工业大学, 工信部新能源转换与存储关键材料技术重点实验室, 黑龙江 哈尔滨,150001
    2.哈尔滨工业大学重庆研究院, 四川 重庆, 401135

收稿日期: 2022-07-09

  修回日期: 2022-08-28

  网络出版日期: 2022-09-30

Catalytic Effect of Disordered Ru-O Configurations for Electrochemical Hydrogen Evolution

  • Xue Sun ,
  • Ya-Jie Song ,
  • Ren-Long Li ,
  • Jia-Jun Wang
Expand
  • 1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, 150001, China
    2. Chongqing Research Institute of HIT, Chongqing 401135, P. R. China
*Tel: (86-451)86412114, E-mail: jiajunhit@hit.edu.cn

Received date: 2022-07-09

  Revised date: 2022-08-28

  Online published: 2022-09-30

摘要

相工程被认为是调节催化剂电子结构和催化活性的有效方法。非晶材料的无序构型允许表面电子结构的灵活重整,显示出其作为析氢反应(HER)催化剂的吸引力。在此,我们设计并开发了一种具有无序Ru-O构型的非晶催化剂(a-RuO2)。结合先进的电镜技术和详细的电化学测试,建立了Ru-O有序性与HER性能的构效关系。具体来说,无序的Ru-O配位显著增强了酸性和碱性 HER 中的催化活性,最终使经济性更高的a-RuO2催化性能接近商业Pt/C。此外,在10 mA·cm-2下进行10 h电流-时间(i-t)测试后,a-RuO2表现出极好的稳定性。进一步的理论模拟显示a-RuO2较低的d带中心和优化的电子输运调制了活性位点对中间反应物的吸附强度,促进了HER动力学。这项工作为通过相工程探索高活性HER催化剂提供了新的观点。

本文引用格式

孙雪 , 宋亚杰 , 李仁龙 , 王家钧 . 无序Ru-O构型对电化学析氢催化性能研究[J]. 电化学, 2022 , 28(10) : 2214011 . DOI: 10.13208/j.electrochem.2214011

Abstract

Phase engineering is considered as an effective method for modulating the electronic structure and catalytic activity of catalysts. The disordered conformation of amorphous materials allows flexible reforming of the surface electronic structure, showing their attractiveness as catalysts for hydrogen evolution reaction (HER). Herein, we designed and developed an amorphous ruthenium dioxide (a-RuO2) catalyst with a disordered Ru-O configuration. The conformational relationship between Ru-O ordering and HER performance is established by combining advanced electron microscopic techniques with detailed electrochemical tests. Specifically, the disordered Ru-O coordination significantly enhanced the HER catalytic activity in both acidic and alkaline media, ultimately leading to HER performance of a-RuO2 approaching that of commercial Pt/C with higher economics. In addition, a-RuO2 exhibited excellent stability after 10 h current-time (i-t) testing at 10 mA·cm-2. Further theoretical simulations showed that the lowered d-band center and optimized electron transport of a-RuO2 modulated the adsorption strength of the active site to the intermediate reactants, promoting HER kinetics. This work provides a new perspective for exploring highly active HER catalysts through phase engineering.

参考文献

[1] Pei Y, Cheng Y, Chen J Y, Smith W, Dong P, Ajayan P M, Ye M X, Shen J F. Recent developments of transition metal phosphides as catalysts in the energy conversionfield[J]. J. Mater. Chem. A, 2018, 6(46): 23220-23243.
[2] Shi Y, Ma Z R, Xiao Y Y, Yin Y C, Huang W M, Huang Z C, Zheng Y Z, Mu F Y, Huang R, Shi G Y, Sun Y Y, Xia X H, Chen W. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction[J]. Nat. Commun., 2021, 12(1): 3021.
[3] Li L G, Wang P T, Shao Q, Huang X Q. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chem. Soc. Rev., 2020, 49(10): 3072-3106.
[4] Jiao Y, Zheng Y, Jaroniec M T, Qiao S Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chem. Soc. Rev., 2015, 44(8): 2060-2086.
[5] Zhao D, Sun K A, Cheong W C, Zheng L R, Zhang C, Liu S J, Cao X, Wu K L, Pan Y, Zhuang Z W, Hu B T, Wang D S, Peng Q, Chen C, Li Y D. Synergistically interactive pyridinic-n-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8982-8990.
[6] Xia J W, Volokh M, Peng G M, Fu Y S, Wang X, Shalom M. Low-cost porous ruthenium layer deposited on nickel foam as a highly active universal-pH electrocatalyst for the hydrogen evolution reaction[J]. ChemSusChem, 2019, 12(12): 2780-2787.
[7] Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Jaroniec M, Qiao S Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst[J]. J. Am. Chem. Soc., 2016, 138(49): 16174-16181.
[8] Wang Y, Kong B, Zhao D Y, Wang H T, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting[J]. Nano Today, 2017, 15: 26-55.
[9] Han Z, Zhang R L, Duan J J, Wang A J, Zhang Q L, Huang H, Feng J J. Platinum-rhodium alloyed dendritic nanoass-emblies: An all-pH efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Int. J. Hydrogen Energy, 2020, 45(11): 6110-6119.
[10] Hu J, Zhang C X, Jiang L, Lin H, An Y M, Zhou D, Leung M K H, Yang S H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393.
[11] Cheng C, Shah S S A, Najam T, Qi X Q, Wei Z D. Improving the electrocatalytic activity for hydrogen evolution reaction by lowering the electrochemical impedance of RuO2/Ni-P[J]. Electrochim. Acta, 2018, 260: 358-364.
[12] Liu J L, Zheng Y, Jiao Y, Wang Z Y, Lu Z G, Vasileff A, Qiao S Z. NiO as a bifunctional promoter for RuO2 toward superior overall water splitting[J]. Small, 2018, 14(16): 1704073.
[13] Xia Y J, Wu W Q, Wang H, Rao S L, Zhang F Y, Zou G F. Amorphous RuS2 electrocatalyst with optimized active sites for hydrogen evolution[J]. Nanotechnology, 2020, 31(14): 145401.
[14] Shin S, Jin Z, Kwon D H, Bose R, Min Y S. High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition[J]. Langmuir, 2015, 31(3): 1196-1202.
[15] Cao D, Wang J Y, Xu H X, Cheng D J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values[J]. Small, 2020, 16(37): 2000924.
[16] Wang J, Hu J, Niu S Q, Li S W, Du Y C, Xu P. Crystalline-amorphous Ni2P4O12/NiMoOx nanoarrays for alkaline water electrolysis: Enhanced catalytic activity via in situ surface reconstruction[J]. Small, 2022, 18(10): 2105972.
[17] Arenal R, Lopez-Bezanilla A. In situ formation of carbon nanotubes encapsulated within boron nitride nanotubes via electron irradiation[J]. ACS Nano, 2014, 8(8): 8419-8425.
[18] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Norskov J K. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): J23-J26.
[19] Wu H M, Feng C Q, Zhang L, Zhang J J, Wilkinson D P. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis[J]. Electrochem. Energy Rev., 2021, 4(3): 473-507.
[20] Zhang L J, Jang H, Liu H H, Kim M G, Yang D J, Liu S G, Liu X E, Cho J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst[J]. Angew. Chem. Int. Ed., 2021, 60(34): 18821-18829.
[21] Rochefort D, Dabo P, Guay D, Sherwood P M A. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions[J]. Electrochim. Acta, 2003, 48(28): 4245-4252.
[22] Wang Y T, Li H J, Zhou W, Zhang X, Zhang B, Yu Y F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia[J]. Angew. Chem. Int. Ed., 2022, 61(19): e202202604.
[23] Zhang Y J, Xu Z F, Li G Y, Huang X J, Hao W C, Bi Y P. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting[J]. Angew. Chem. Int. Ed., 2019, 58(40): 14229-14233.
[24] Johannes M D, Stux A M, Swider-Lyons K E. Electronic structure and properties of Li-insertion materials: Li2RuO3 and RuO2[J]. Phys. Rev. B, 2008, 77(7): 075124.
[25] Qiu H J, Ito Y, Cong W T, Tan Y W, Liu P, Hirata A, Fujita T, Tang Z, Chen M W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production[J]. Angew. Chem. Int. Ed., 2015, 54(47): 14031-14035.
[26] Huang H W, Jung H, Li S F, Kim S, Han J W, Lee J. Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping[J]. Nano Energy, 2022, 92: 106763.
[27] Shang H S, Zhao Z H, Pei J J, Jiang Z L, Zhou D N, Li A, Dong J C, An P F, Zheng L R, Chen W X. Dynamic evolution of isolated Ru-FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction[J]. J. Mater. Chem. A, 2020, 8(43): 22607-22612.
文章导航

/