欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池

  • 化五星 ,
  • 夏静怡 ,
  • 胡忠豪 ,
  • 李欢 ,
  • 吕伟 ,
  • 杨全红
展开
  • a天津大学化工学院,天津市先进碳与电化学储能重点实验室,天津 300072
    b清华大学深圳国际研究生院,深圳市石墨烯重点实验室、炭功能材料工程实验室,深圳 518055

收稿日期: 2022-07-30

  修回日期: 2022-08-23

  录用日期: 2022-09-15

  网络出版日期: 2022-09-19

Bimetallic Compound Catalysts with Multiple Active Centers for Accelerated Polysulfide Conversion in Li-S Batteries

  • Wu-Xing Hua ,
  • Jing-Yi Xia ,
  • Zhong-Hao Hu ,
  • Huan Li ,
  • Wei Lv ,
  • Quan-Hong Yang
Expand
  • aTianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
    bShenzhen Key Laboratory for Graphene-based Materials and Engineering Laboratory for Functionalized Carbon Material, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
First author contact:

#W. H. and J. X. contributed equally to this work.

*Tel: (86-755)86964142, E-mail: lv.wei@sz.tsinghua.edu.cn;

Received date: 2022-07-30

  Revised date: 2022-08-23

  Accepted date: 2022-09-15

  Online published: 2022-09-19

Supported by

National Key R&D Program of China(2021YFF0500600);National Natural Science Foundation of China(51932005);National Natural Science Foundation of China(52022041);All-Solid-State Lithium Battery Electrolyte Engineering Research Centre(XMHT20200203006);China Postdoctoral Science Foundation(2022M710041)

摘要

锂硫电池是极具应用潜力的下一代高能量密度电池体系之一。然而,其充放电中间产物多硫化锂的“穿梭效应”不仅消耗大量电解液,还导致硫活性物质利用率低、循环寿命短,是锂硫电池产业化进程中的主要瓶颈之一。引入催化剂加速硫活性物质转化速率,减少多硫化锂在电解液中的累积浓度,是抑制穿梭效应的有效解决策略。高效的催化剂应具备丰富的催化活性位点,以确保高效吸附多硫化锂并加速其向不溶的充放电产物转化。本文制备出硫掺杂石墨烯表面原位负载的双金属硫化物NiCo2S4(NCS@SG)并将其作为催化剂应用于锂硫电池的中间层。相比于单金属硫化物(CoS),NiCo2S4催化剂具有多活性中心催化位点,可以更好地吸附多硫化锂并促进其向放电产物快速转化。应用上述中间层后,电池的充放电比容量、库仑效率和循环稳定性得到了明显提升。当硫的负载达到15.3 mg·cm-2时,经过50次循环后,具有NCS@SG中间层的电池获得了高达93.9%的容量保持率。上述结果表明,设计双金属基催化剂是优化锂硫电池催化剂活性和反应效率的重要方向。

本文引用格式

化五星 , 夏静怡 , 胡忠豪 , 李欢 , 吕伟 , 杨全红 . 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学, 2023 , 29(3) : 2217006 . DOI: 10.13208/j.electrochem.2217006

Abstract

Practical applications of lithium-sulfur (Li-S) batteries are hindered mainly by the low sulfur utilization and severe capacity fading derived from the polysulfide shuttling. Catalysis is an effective remedy to those problems by promoting the conversion of polysulfides to reduce their accumulation in the electrolyte, which needs the catalyst to have efficient adsorption ability to soluble polysulfides and high activity for their conversion. In this work, we have proposed a bimetallic compound of NiCo2S4 anchored onto sulfur-doped graphene (NCS@SG) to fabricate a catalytic interlayer for Li-S batteries. Compared to CoS, the NiCo2S4 demonstrated much higher catalytic activity toward sulfur reduction reaction due to its multiple anchoring and catalytic active sites derived from the coordination of the bimetallic centers. As a result, the NCS@SG interlayer dramatically improved the specific capacity, rate performance, and cycling stability of Li-S batteries. Especially, when the areal sulfur loading of the NCS@SG battery increased to 15.3 mg·cm-2, the high-capacity retention of 93.9 % could be achieved over 50 cycles.

参考文献

[1] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2012, 11: 19-29.
[2] Manthiram A, Chung S H, Zu C X. Lithium-sulfur batteries: progress and prospects[J]. Adv. Mater., 2015, 27(12): 1980-2006.
[3] Chen X, Hou T Z, Persson K A, Zhang Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives[J]. Mater. Today, 2019, 22: 142-158.
[4] Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle I R, Lu G Q M. Carbon-sulfur composites for Li-S batteries: status and prospects[J]. J. Mater. Chem. A., 2013, 1(33): 9382-9394.
[5] Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat. Commun., 2015, 6: 5682.
[6] Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
[7] Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2012, 134(45): 18510-18513.
[8] Zheng G Y, Zhang Q F, Cha J J, Yang Y, Li W Y, Seh Z W, Cui Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Lett., 2013, 13(3): 1265-1270.
[9] Zhang J T, Hu H, Li Z, Lou X W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J]. Angew. Chem., Int. Ed., 2016, 55(12): 3982-3986.
[10] Hua W X, Yang Z, Nie H G, Li Z Y, Yang J Z, Guo Z Q, Ruan C P, Chen X A, Huang S M. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries[J]. ACS Nano, 2017, 11(2): 2209-2218.
[11] Fang R P, Zhao S Y, Sun Z H, Wang W, Cheng H M, Li F. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv. Mater., 2017, 29(48): 1606823.
[12] Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): 1700270.
[13] Geng C N, Hua W X, Wang D W, Ling G W, Zhang C, Yang Q H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques[J]. SusMat, 2021, 1(1): 51-65.
[14] Wang L, Hua W X, Wan X, Feng Z, Hu Z H, Li H, Niu J T, Wang L X, Wang A S, Liu J Y, Lang X Y, Wang G, Li W F, Yang Q H, Wang W C. Design rules of a sulfur redox electrocatalyst for lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(14): 2110279.
[15] Peng L L, Wei Z Y, Wan C Z, Li J, Chen Z, Zhu D, Baumann D, Liu H T, Allen C S, Xu X, Kirkland A I, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X F. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nat. Catal., 2020, 3(9): 762-770.
[16] Han Z Y, Zhao S Y, Xiao J W, Zhong X W, Sheng J Z, Lv W, Zhang Q F, Zhou G M, Cheng H M. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries[J]. Adv. Mater., 2021, 33(44): 2105947.
[17] Li Z H, Zhou C, Hua J H, Hong X F, Sun C L, Li H W, Xu X, Mai L Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability[J]. Adv. Mater., 2020, 32(10): 1907444.
[18] Hua W X, Li H, Pei C, Xia J Y, Sun Y F, Zhang C, Lv W, Tao Y, Jiao Y, Zhang B S, Qiao S Z, Wan Y, Yang Q H. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(38): 2101006.
[19] Lin H B, Yang L Q, Jiang X, Li G C, Zhang T R, Yao Q F, Zheng G W, Lee J Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(6): 1476-1486.
[20] Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.
[21] Xia J Y, Hua W X, Wang L, Sun Y F, Geng C N, Zhang C, Wang W C, Wan Y, Yang Q H. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li-S batteries[J]. Adv. Funct. Mater., 2021, 31(26): 2101980.
[22] Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017, 8: 14627.
[23] Zhou J B, Liu X J, Zhu L Q, Zhou J, Guan Y, Chen L, Niu S W, Cai J Y, Sun D, Zhu Y C, Du J, Wang G M, Qian Y T. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry[J]. Joule, 2018, 2(12): 2681-2693.
[24] Yang Y X, Zhong Y R, Shi Q W, Wang Z H, Sun K N, Wang H L. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions[J]. Angew. Chem., Int. Ed., 2018, 57(47): 15549-15552.
[25] Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-1703.
[26] Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(19): 1900219.
[27] Wang R C, Luo C, Wang T S, Zhou G M, Deng Y Q, He Y B, Zhang Q F, Kang F Y, Lv W, Yang Q H. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur batteries[J]. Adv. Mater., 2020, 32(32): 2000315.
[28] Zhao M, Peng H J, Zhang Z W, Li B Q, Chen X, Xie J, Chen X, Wei J Y, Zhang Q, Huang J Q. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal[J]. Angew. Chem. Int. Ed., 2019, 58(12): 3779-3783.
[29] Zeng P, Liu C, Zhao X F, Yuan C, Chen Y G, Lin H P, Zhang L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries[J]. ACS Nano, 2020, 14(9): 11558-11569.
[30] Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(5): 840-845.
[31] Zhang B, Luo C, Deng Y Q, Huang Z J, Zhou G M, Lv W, He Y B, Wan Y, Kang F Y, Yang Q H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries[J]. Adv. Energy Mater., 2020, 10(15): 2000091.
[32] Lv W, Tang D M, He Y B, You C H, Shi Z Q, Chen X C, Chen C M, Hou P X, Liu C, Yang Q H. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage[J]. ACS Nano, 2009, 3(11): 3730-3736.
[33] Zheng C, Niu S Z, Lv W, Zhou G M, Li J, Fan S X, Deng Y Q, Pan Z Z, Li B H, Kang F Y, Yang Q H. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33: 306-312.
[34] Xiao Z B, Yang Z, Wang L, Nie H G, Zhong M E, Lai Q Q, Xu X J, Zhang L J, Huang S M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries[J]. Adv. Mater., 2015, 27(18): 2891-2898.
[35] Liu Q, Jin J T, Zhang J Y. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. ACS Appl. Mater. Inter., 2013, 5(11): 5002-5008.
[36] Zhang Z, Shao A H, Xiong D G, Yu J, Koratkar N, Yang Z Y. Efficient polysulfide redox enabled by lattice-distorted Ni3Fe intermetallic electrocatalyst-modified separator for lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(17): 19572-19580.
[37] Li H, Meng R W, Guo Y, Chen B A, Jiao Y, Ye C, Long Y, Tadich A, Yang Q H, Jaroniec M, Qiao S Z. Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al-S batteries[J]. Nat. Commun., 2021, 12(1): 5714.
[38] Liu B, Huang S Z, Kong D Z, Hu J P, Yang H Y. Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Li-S battery[J]. J. Mater. Chem. A, 2019, 7(13): 7604-7613
[39] Xiao Z B, Yang Z, Li Z L, Li P Y, Wang R H. Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix[J]. ACS Nano, 2019, 13(3): 3404-3412.
[40] Al Salem H, Babu G, Rao C V, Arava L M R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137(36): 11542-11545.
[41] Hao B Y, Li H, Lv W, Zhang Y B, Niu S Z, Qi Q, Xiao S J, Li J, Kang F Y, Yang Q H. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries[J]. Nano Energy, 2019, 60: 305-311.
[42] Xu K L, Liu X J, Liang J W, Cai J Y, Zhang K L, Lu Y, Wu X, Zhu M G, Liu Y, Zhu Y C, Wang G M, Qian Y T. Manipulating the redox kinetics of Li-S chemistry by tellurium doping for improved Li-S batteries[J]. ACS Energy Lett., 2018, 3(2): 420-427.
[43] Luo L, Chung S H, Manthiram A. Rational design of a dual-function hybrid cathode substrate for lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(24): 1801014.
[44] Shen Z H, Cao M Q, Zhang Z L, Pu J, Zhong C L, Li J C, Ma H X, Li F J, Zhu J, Pan F, Zhang H G. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery[J]. Adv. Funct. Mater., 2020, 30(3): 1906661.
[45] Zhao M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q, Huang J Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52.
[46] Zhao M, Peng Y Q, Li B Q, Zhang X Q, Huang J Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries[J]. J. Energy Chem., 2021, 56: 203-208.
[47] Fang R P, Li G X, Zhao S Y, Yin L C, Du K, Hou P X, Wang S G, Cheng H M, Liu C, Li F. Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries[J]. Nano Energy, 2017, 42: 205-214.
文章导航

/