基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究
收稿日期: 2022-08-05
修回日期: 2022-09-08
录用日期: 2022-09-15
网络出版日期: 2022-09-19
Boronate Affinity-Assisted Electrochemically Controlled ATRP for Ultrasensitive Electrochemical Aptasensing of Carcinoembryonic Antigen
Received date: 2022-08-05
Revised date: 2022-09-08
Accepted date: 2022-09-15
Online published: 2022-09-19
癌胚抗原(CEA)是一种酸性糖蛋白,其作为一种广谱肿瘤标志物在恶性肿瘤的鉴别诊断与监测等方面具有重要价值。在此,借助于硼酸盐亲和辅助电化学调控原子转移自由基聚合(BA-eATRP)的双重信号放大作用,我们报道了一种电化学适体传感器,用于CEA的超灵敏、高选择性检测。基于BA-eATRP的电化学CEA适体传感的基本原理为:待核酸适体捕获CEA抗原后,借助于苯硼酸(PBA)基团与单糖残基上的顺式二醇基团间的选择性亲和相互作用将ATRP引发剂位点靶向性地共价偶联到CEA抗原上;随后,以二茂铁甲基丙烯酸甲酯(FcMMA)作为单体,借助于eATRP将二茂铁(Fc)探针引入电极表面。由于CEA上含有数百个顺式二醇基团,基于硼酸盐亲和的交联反应可使得在每个CEA抗原上标记数百个ATRP引发剂分子。此外,通过eATRP反应,可以在电极表面接枝长的二茂铁基聚合物链,使得每个标记有ATRP引发剂的位点均能连接上成百上千个Fc探针。因此,BA-eATRP可使得每个CEA抗原上标记上大量的Fc探针。在最佳条件下,基于BA-eATRP的电化学适体传感器能够实现浓度低为0.34 pg·mL-1的CEA的高选择性检测,其线性范围为1.0-1000 pg·mL-1。而且,该适体传感器可用于人血清中CEA的定量分析。基于BA-eATRP的电化学适体传感器具有成本低廉、操作简便等优良特性,在CEA的超灵敏、高选择性检测方面具有广阔的应用前景。
胡琼 , 李诗琪 , 梁伊依 , 冯文星 , 骆怡琳 , 曹晓静 , 牛利 . 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学, 2023 , 29(6) : 2218001 . DOI: 10.13208/j.electrochem.2218001
As an acidic glycoprotein, carcinoembryonic antigen (CEA) is of great value as a broad-spectrum tumor marker in the differential diagnosis and surveillance of malignant tumors. In this work, we report an electrochemical aptasensor for the ultrasensitive and highly selective detection of CEA, taking advantage of the dual amplification by the boronate affinity-assisted electrochemically controlled atom transfer radical polymerization (BA-eATRP). Specifically, the BA-eATRP-based electrochemical aptasensing of CEA involves the capture of target antigens by nucleic acid aptamers, the covalent crosslinking of ATRP initiators to CEA antigens via the selective interactions between the phenylboronic acid (PBA) group and the cis-diol group of the monosaccharide residues, and the collection of the ferrocene (Fc) reporters via the eATRP of ferrocenylmethyl methacrylate (FcMMA). As CEA is decorated with hundreds of cis-diol groups, the BA-based crosslinking can result in the labeling of each CEA with hundreds of ATRP initiators; furthermore, the eATRP of FcMMA results in the surface-initiated growth of long-chain ferrocenyl polymers, leading to the tethering of each ATRP initiator-conjugated site with hundreds to thousands of Fc reporters. Such that, the BA-eATRP can result in the efficient labeling of each CEA with a plenty of Fc reporters. Under the optimized conditions, the BA-eATRP-based strategy enables the highly selective aptasensing of CEA at a concentration as low as 0.34 pg·mL-1, with a linear range of 1.0-1,000 pg·mL-1. Besides, this aptasensor has been successfully applied to the quantitative analysis of CEA in human serum. The BA-eATRP-based electrochemical aptasensor is cost-effective and simple in operation, holding broad application prospect in the ultrasensitive and highly selective detection of CEA.
[1] | Fletcher R H. Carcinoembryonic antigen[J]. Ann. Intern. Med., 1986, 104(1): 66-73. |
[2] | Hall C, Clarke L, Pal A, Buchwald P, Eglinton T, Wakeman C, Frizelle F. A review of the role of carcinoembryonic antigen in clinical practice[J]. Ann. Coloproctol., 2019, 35(6): 294-305. |
[3] | Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners C P. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule[J]. Cell, 1989, 57(2): 327-334. |
[4] | Huang L T, Zeng Y Y, Liu X L, Tang D P. Pressure-based immunoassays with versatile electronic sensors for carcinoembryonic antigen detection[J]. ACS Appl. Mater. Interfaces, 2021, 13(39): 46440-46450. |
[5] | Qiu Z L, Shu J, Tang D P. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper[J]. Anal. Chem., 2017, 89(9): 5152-5160. |
[6] | Yu Q L, Wang X, Duan Y X. Capillary-based three-dimensional immunosensor assembly for high-performance detection of carcinoembryonic antigen using laser-induced fluorescence spectrometry[J]. Anal. Chem., 2014, 86(3): 1518-1524. |
[7] | Xing T Y, Zhao J, Weng G J, Zhu J, Li J J, Zhao J W. Specific detection of carcinoembryonic antigen based on fluorescence quenching of hollow porous gold nanoshells with roughened surface[J]. ACS Appl. Mater. Interfaces, 2017, 9(42): 36632-36641. |
[8] | Fan G C, Zhu H, Du D, Zhang J R, Zhu J J, Lin Y. Enhanced photoelectrochemical immunosensing platform based on CdSeTe@CdS:Mn core-shell quantum dots-sensitized TiO2 amplified by CuS nanocrystals conjugated signal antibodies[J]. Anal. Chem., 2016, 88(6): 3392-3399. |
[9] | Guan X X, Deng X X, Song J, Wang X Y, Wu S. Polydopamine with tailorable photoelectrochemical activities for the highly sensitive immunoassay of tumor markers[J]. Anal. Chem., 2021, 93(17): 6763-6769. |
[10] | Li J J, Zhang Y, Kuang X, Wang Z L, Wei Q. A network signal amplification strategy of ultrasensitive photoelectrochemical immunosensing carcinoembryonic antigen based on CdSe/melamine network as label[J]. Biosens. Bioelectron., 2016, 85: 764-770. |
[11] | Carneiro M C, Sousa-Castillo A, Correa-Duarte M A, Sales M G F. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen[J]. Biosens. Bioelectron., 2019, 146: 111761. |
[12] | Chon H, Lee S, Son S W, Oh C H, Choo J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres[J]. Anal. Chem., 2009, 81(8): 3029-3034. |
[13] | Wang J, Cao Y, Xu Y Y, Li G X. Colorimetric multiplexed immunoassay for sequential detection of tumor markers[J]. Biosens. Bioelectron., 2009, 25(2): 532-536. |
[14] | Zhao L J, Wang J, Su D D, Zhang Y Y, Lu H Y, Yan X, Bai J, Gao Y, Lu G Y. The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing a robust colorimetric biosensor[J]. Nanoscale, 2020, 12(37): 19420-19428. |
[15] | Zhou Y, Chen S H, Luo X L, Chai Y Q, Yuan R. Ternary electrochemiluminescence nanostructure of Au nanoclusters as a highly efficient signal label for ultrasensitive detection of cancer biomarkers[J]. Anal. Chem., 2018, 90(16): 10024-10030. |
[16] | Wang N N, Feng Y Q, Wang Y W, Ju H X, Yan F. Electrochemiluminescent imaging for multi-immunoassay sensitized by dual DNA amplification of polymer dot signal[J]. Anal. Chem., 2018, 90(12): 7708-7714. |
[17] | Yang L, Zhu W, Ren X, Khan M S, Zhang Y, Du B, Wei Q. Macroporous graphene capped Fe3O4 for amplified electrochemiluminescence immunosensing of carcinoembryonic antigen detection based on CeO2@TiO2[J]. Biosens. Bioelectron., 2017, 91: 842-848. |
[18] | Wu M S, Shi H W, He L J, Xu J J, Chen H Y. Microchip device with 64-site electrode array for multiplexed immunoassay of cell surface antigens based on electrochemiluminescence resonance energy transfer[J]. Anal. Chem., 2012, 84(9): 4207-4213. |
[19] | Gu X, She Z, Ma T, Tian S, Kraatz H B. Electrochemical detection of carcinoembryonic antigen[J]. Biosens. Bioelectron., 2018, 102: 610-616. |
[20] | Ji Y L, Guo J X, Ye B X, Peng G H, Zhang C, Zou L N. An ultrasensitive carcinoembryonic antigen electrochemical aptasensor based on 3D DNA nanoprobe and Exo III[J]. Biosens. Bioelectron., 2022, 196: 113741. |
[21] | Liang H H, Luo Y, Li Y Y, Song Y H, Wang L. An immunosensor using electroactive COF as signal probe for electrochemical detection of carcinoembryonic antigen[J]. Anal. Chem., 2022, 94(13): 5352-5358. |
[22] | Hu Q, Ma K F, Mei Y Q, He M H, Kong J M, Zhang X J. Metal-to-ligand charge-transfer: Applications to visual detection of β-galactosidase activity and sandwich immunoassay[J]. Talanta, 2017, 167: 253-259. |
[23] | Wang D F, Li Y Y, Lin Z Y, Qiu B, Guo L H. Surface-enhanced electrochemiluminescence of Ru@SiO2 for ultrasensitive detection of carcinoembryonic antigen[J]. Anal. Chem., 2015, 87(12): 5966-5972. |
[24] | Qi J, Li B W, Zhou N, Wang X Y, Deng D M, Luo L Q, Chen L X. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device[J]. Biosens. Bioelectron., 2019, 142: 111533. |
[25] | Liu Z, Lei S, Zou L N, Li G P, Xu L L, Ye B X. A label-free and double recognition-amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay[J]. Biosens. Bioelectron., 2019, 131: 113-118. |
[26] | Li J, Xu L Q, Shen Y J, Guo L, Yin H, Fang X H, Yang Z J, Xu Q, Li H B. Superparamagnetic nanostructures for split-type and competitive-mode photoelectrochemical aptasensing[J]. Anal. Chem., 2020, 92(12): 8607-8613. |
[27] | Zeng X X, Ma S S, Bao J C, Tu W W, Dai Z H. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing[J]. Anal. Chem., 2013, 85(24): 11720-11724. |
[28] | Zhang Y H, Li M J, Wang H J, Yuan R, Wei S P. Supersensitive photoelectrochemical aptasensor based on Br,N-codoped TiO2 sensitized by quantum dots[J]. Anal. Chem., 2019, 91(16): 10864-10869. |
[29] | Ma C, Liu H Y, Zhang L N, Li H, Yan M, Song X R, Yu J H. Multiplexed aptasensor for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels and Ru(NH3)63+ electronic wires[J]. Biosens. Bioelectron., 2018, 99: 8-13. |
[30] | Yang H Q, Xu Y, Hou Q Q, Xu Q Z, Ding C F. Magnetic antifouling material based ratiometric electrochemical biosensor for the accurate detection of CEA in clinical serum[J]. Biosens. Bioelectron., 2022, 208: 114216. |
[31] | Zhai X J, Wang Q L, Cui H F, Song X, Lv Q Y, Guo Y. A DNAzyme-catalyzed label-free aptasensor based on multifunctional dendrimer-like DNA assembly for sensitive detection of carcinoembryonic antigen[J]. Biosens. Bioelectron., 2021, 194: 113618. |
[32] | Wang Q L, Cui H F, Song X, Fan S F, Chen L L, Li M M, Li Z Y. A label-free and lectin-based sandwich aptasensor for detection of carcinoembryonic antigen[J]. Sens. Actuators, B, 2018, 260: 48-54. |
[33] | Paniagua G, Villalonga A, Eguílaz M, Vegas B, Parrado C, Rivas G, Díez P, Villalonga R. Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element[J]. Anal. Chim. Acta, 2019, 1061: 84-91. |
[34] | Guo C P, Su F F, Song Y P, Hu B, Wang M H, He L H, Peng D L, Zhang Z H. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen[J]. ACS Appl. Mater. Interfaces, 2017, 9(47): 41188-41199. |
[35] | Wu Y F, Liu S Q, He L. Electrochemical biosensing using amplification-by-polymerization[J]. Anal. Chem., 2009, 81(16): 7015-7021. |
[36] | Yuan L, Wei W, Liu S Q. Label-free electrochemical immunosensors based on surface-initiated atom radical polymerization[J]. Biosens. Bioelectron., 2012, 38(1): 79-85. |
[37] | He P, Zheng W, Tucker E Z, Gorman C B, He L. Reversible addition-fragmentation chain transfer polymerization in DNA biosensing[J]. Anal. Chem., 2008, 80(10): 3633-3639. |
[38] | Hu Q, Han D X, Gan S Y, Bao Y, Niu, L. Surface-initiated-reversible-addition-fragmentation-chain-transfer polymerization for electrochemical DNA biosensing[J]. Anal. Chem., 2018, 90(20): 12207-12213. |
[39] | Wu Y F, Wei W, Liu S Q. Target-triggered polymerization for biosensing[J]. Acc. Chem. Res., 2012, 45(9): 1441-1450. |
[40] | Hu Q, Gan S Y, Bao Y, Zhang Y W, Han D X, Niu L. Controlled/“living” radical polymerization-based signal amplification strategies for biosensing[J]. J. Mater. Chem. B, 2020, 8(16): 3327-3340. |
[41] | Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes[J]. J. Am. Chem. Soc., 1995, 117(20): 5614-5615. |
[42] | Magenau A J, Strandwitz N C, Gennaro A, Matyjaszewski K. Electrochemically mediated atom transfer radical polymerization[J]. Science, 2011, 332(6025): 81-84. |
[43] | Hu Q, Wang Q W, Sun G Z, Kong J M, Zhang X J. Electrochemically mediated surface-initiated de novo growth of polymers for amplified electrochemical detection of DNA[J]. Anal. Chem., 2017, 89(17): 9253-9259. |
[44] | Hu Q, Gan S Y, Bao Y, Zhang Y W, Han D X, Niu L. Electrochemically controlled ATRP for cleavage-based electrochemical detection of the prostate-specific antigen at femtomolar level concentrations[J]. Anal. Chem., 2020, 92(24): 15982-15988. |
[45] | Hu Q, Hu S H, Li S Q, Liu S J, Liang Y Y, Cao X J, Luo Y L, Xu W J, Wang H C, Wan J W, Feng W X, Niu L. Boronate affinity-based electrochemical aptasensor for point-of-care glycoprotein detection[J]. Anal. Chem., 2022, 94(28), 10206-10212. |
[46] | Hu Q, Wan J W, Wang H C, Cao X J, Li S Q, Liang Y Y, Luo Y L, Wang W, Niu L. Boronate-affinity cross-linking-based ratiometric electrochemical detection of glycoconjugates[J]. Anal. Chem., 2022, 94(26), 9481-9486. |
[47] | Hu Q, Su L F, Chen Z H, Huang Y Y, Qin D D, Niu L. Coenzyme-mediated electro-RAFT polymerization for amplified electrochemical interrogation of trypsin activity[J]. Anal. Chem., 2021, 93(27): 9602-9608. |
[48] | Hu Q, Su L F, Luo Y L, Cao X J, Hu S H, Li S Q, Liang Y Y, Liu S J, Xu W J, Qin D D, Niu L. Biologically mediated RAFT polymerization for electrochemical sensing of kinase activity[J]. Anal. Chem., 2022, 94(16): 6200-6205. |
[49] | Fu Z F, Liu H, Ju H X. Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers[J]. Anal. Chem., 2006, 78(19): 6999-7005. |
[50] | Zhou L L, Wang Y J, Xing R R, Chen J, Liu J, Li W, Liu Z. Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins[J]. Biosens. Bioelectron., 2019, 145: 111729. |
[51] | Wu X, Li Z, Chen X X, Fossey J S, James T D, Jiang Y B. Selective sensing of saccharides using simple boronic acids and their aggregates[J]. Chem. Soc. Rev., 2013, 42(20): 8032-8048. |
[52] | Zhang W, Liu W, Li P, Xiao H B, Wang H, Tang B. A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity[J]. Angew. Chem. Int. Ed., 2014, 53(46): 12489-12493. |
[53] | Li D J, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: Structure, properties and applications[J]. Chem. Soc. Rev., 2015, 44(22): 8097-8123. |
[54] | Ye J, Chen Y, Liu Z. A boronate affinity sandwich assay: An appealing alternative to immunoassays for the determination of glycoproteins[J]. Angew. Chem. Int. Ed., 2014, 53(39): 10386-10389. |
[55] | Wu L L, Wang Y D, Xu X, Liu Y L, Lin B Q, Zhang M X, Zhang J L, Wan S, Yang C Y, Tan W H. Aptamer-based detection of circulating targets for precision medicine[J]. Chem. Rev., 2021, 121(19): 12035-12105. |
[56] | Tan W, Donovan M J, Jiang J. Aptamers from cell-based selection for bioanalytical applications[J]. Chem. Rev., 2013, 113(4): 2842-2862. |
[57] | Zhu Z, Song Y, Li C, Zou Y, Zhu L, An Y, Yang C J. Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification[J]. Anal. Chem., 2014, 86(12): 5881-5888. |
/
〈 |
|
〉 |