欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

高性能锂硫电池用钴/碳复合材料硫宿主

  • 杨云锐 ,
  • 董欢欢 ,
  • 郝志强 ,
  • 何祥喜 ,
  • 杨卓 ,
  • 李林 ,
  • 侴术雷
展开
  • a碳中和研究院,化学与材料工程学院,温州大学,浙江 温州 325035
    b温州市钠离子电池重点实验室,温州大学碳中和技术创新研究院,浙江 温州 325035

收稿日期: 2022-07-20

  修回日期: 2022-08-15

  录用日期: 2022-09-06

  网络出版日期: 2022-09-14

Cobalt/Carbon Composites as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries

  • Yun-Rui Yang ,
  • Huan-Huan Dong ,
  • Zhi-Qiang Hao ,
  • Xiang-Xi He ,
  • Zhuo Yang ,
  • Lin Li ,
  • Shu-Lei Chou
Expand
  • aInstitute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
    bWenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang 325035, China
*Tel: (86-577)89601360 E-mail: chou@wzu.edu.cn
*Tel: (86-577)89601360 E-mail: linli@wzu.edu.cn

Received date: 2022-07-20

  Revised date: 2022-08-15

  Accepted date: 2022-09-06

  Online published: 2022-09-14

摘要

锂硫电池由于具有较高的能量密度而被认为是极具发展前景的储能设备之一。然而,硫正极遭遇迟缓的反应动力学、缓慢的电荷转移、大的体积膨胀、严重的多硫化锂穿梭效应,这些问题不可避免地导致锂硫电池表现出低的可逆容量、差的倍率性能、短的循环寿命,限制了锂硫电池的实际应用。本文总结了钴/碳复合材料(包括钴纳米颗粒和钴单原子)作为硫宿主的研究进展。总的来说,钴扮演着电催化剂的角色,能够抑制多硫化锂的穿梭效应,加快电化学反应动力学,促进离子/电子转移以及缓解体积膨胀。同时,我们展望了钴/碳复合材料作为锂硫电池硫宿主的发展前景。本工作可为钴/碳复合材料作为锂硫电池硫宿主提供完整的蓝图和建设性的建议,同时这些策略也可用于其他金属-硫电池。

本文引用格式

杨云锐 , 董欢欢 , 郝志强 , 何祥喜 , 杨卓 , 李林 , 侴术雷 . 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学, 2023 , 29(4) : 2217003 . DOI: 10.13208/j.electrochem.2217003

Abstract

Lithium-sulfur (Li-S) battery is one of the promising energy storage devices because of its high energy density. However, the sulfur cathode suffers from sluggish electrochemical reaction kinetics, slow charge transfer, large volume expansion and severe shuttle effect of lithium polysulfides inevitably resulting in low reversible capacity, poor rate performance and short cycle life, limiting its practical applications. Herein, the recent progress of cobalt/carbon composites, including cobalt nanoparticles and cobalt single atoms, as the sulfur host materials in Li-S batteries is overviewed. In general, cobalt plays the role of electrocatalyst, which inhibits the shuttle effect of lithium polysulfides, accelerates the electrochemical reaction kinetics, facilitates ion/electron transfer and alleviates volume expansion. Meanwhile, the prospects for the development of cobalt/carbon composites as sulfur hosts in Li-S batteries are proposed. It is expected to offer a whole blueprint and constructive suggestions for the cobalt/carbon composites as sulfur hosts for Li-S batteries, and these strategies can also be effective for other metal-sulfur batteries.

参考文献

[1] Camargos P H, dos Santos P H J, dos Santos I R, Ribeiro G S, Caetano R E. Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art[J]. Int. J. Energy Res., 2022, 46(13): 19258-19268.
[2] Madani S S, Schaltz E, K?r S K. Characterization of the compressive load on a lithium-ion battery for electric vehicle application[J]. Machines, 2021, 9(4): 71.
[3] Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K S, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86.
[4] Gao Y, Ji W J, Chen X Q. Numerical study on thermal management of air-cooling model for diamond, triangular and rectangular lithium-ion batteries of electric vehicles[J]. Processes, 2022, 10(6): 1104.
[5] Chen L, Wu H L, Ai X P, Cao Y L, Chen Z X. Toward wide-temperature electrolyte for lithium-ion batteries[J]. Battery Energy., 2022, 1(2): 20210006.
[6] Zhou G M, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries[J]. Nat. Energy, 2022, 7(4): 312-319.
[7] Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J H, Yang X Q, Zhang J G. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat. Energy, 2019, 4(3): 180-186.
[8] Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
[9] Yin Y X, Xin S, Guo Y G, Wan L J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angew. Chem. Int. Ed., 2013, 52(50): 13186-13200.
[10] Zhao M, Li X Y, Chen X, Li B Q, Kaskel S, Zhang Q, Huang J Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries[J]. eScience, 2021, 1(1): 44-52.
[11] Fang R P, Zhao S Y, Sun Z H, Wang D, Cheng H M, Li F. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Adv. Mater., 2017, 29(48): 1606823.
[12] Liu S F, Wang X L, Xie D, Xia X H, Gu C D, Wu J B, Tu J P. Recent development in lithium metal anodes of liquid-state rechargeable batteries[J]. J. Alloy. Compd., 2018, 730: 135-149.
[13] Yue X Y, Ma C, Bao J, Yang S Y, Chen D, Wu X J, Zhou Y N. Failure mechanisms of lithium metal anode and their advanced characterization technologies[J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012.
[14] Balach J, Linnemann J, Jaumann T, Giebeler L. Metal-based nanostructured materials for advanced lithium-sulfur batteries[J]. J. Mater. Chem. A, 2018, 6(46): 23127-23168.
[15] Li Y J, Guo S J. Material design and structure optimization for rechargeable lithium-sulfur batteries[J]. Matter, 2021, 4(4): 1142-1188.
[16] Fang X, Peng H S. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries[J]. Small, 2015, 11(13): 1488-1511.
[17] Sun H, Song C W, Pang Y P, Zheng S Y. Functional design of separator for Li-S batteries[J]. Prog. Chem., 2020, 32(9): 1402-1411.
[18] Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities[J]. Angew. Chem. Int. Ed., 2020, 59(31): 12636-12652.
[19] Chu R R, Nguyen T T, Bai Y Q, Kim N H, Lee J H. Uniformly controlled treble boundary using enriched adsorption sites and accelerated catalyst cathode for robust lithium-sulfur batteries[J]. Adv. Energy Mater., 2022, 12(9): 2102805.
[20] Hong H, Mohamad N A R C, Chae K, Mota F M, Kim D H. The lithium metal anode in Li-S batteries: Challenges and recent progress[J]. J. Mater. Chem. A, 2021, 9(16): 10012-10038.
[21] Zhang T, Zhang L, Hou Y L. Mxenes: Synthesis strategies and lithium-sulfur battery applications[J]. eScience, 2022, 2(2): 164-182.
[22] Li Z, Hou L P, Zhang X Q, Li B Q, Huang J Q, Chen C M, Liu Q B, Xiang R, Zhang Q. A Nafion protective layer for stabilizing lithium metal anodes in working lithium-sulfur batteries[J]. Battery Energy, 2022, 1(3): 20220006.
[23] Wang C D, Ma Y, Du X F, Zhang H R, Xu G J, Cui G L. A polysulfide radical anions scavenging binder achieves long-life lithium-sulfur batteries[J]. Battery Energy, 2022, 1(3): 20220010.
[24] Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
[25] Fu A, Wang C Z, Pei F, Cui J Q, Fang X L, Zheng N F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries[J]. Small, 2019, 15(10): 1804786.
[26] Li S S, Jin B, Zhai X J, Li H, Jiang Q. Review of carbon materials for lithium-sulfur batteries[J]. ChemistrySelect, 2018, 3(8): 2245-2260.
[27] Zhou G M, Yin L C, Wang D W, Li L, Pei S F, Gentle I R, Li F, Cheng H M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Nano, 2013, 7(6): 5367-5375.
[28] Kang J B, Tian X H, Yan C Z, Wei L Y, Gao L, Ju J G, Zhao Y X, Deng N P, Cheng B W, Kang W M. Customized structure design and functional mechanism analysis of carbon spheres for advanced lithium-sulfur batteries[J]. Small, 2022, 18(8): 2104469.
[29] Li L, Zhou G M, Yin L C, Koratkar N, Li F, Cheng H M. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries[J]. Carbon, 2016, 108:120-126.
[30] Babu G, Ababtain K, Ng K Y S, Arava L M R. Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration[J]. Sci. Rep., 2015, 5: 8763.
[31] Sun Z X, Vijay S, Heenen H H, Eng A Y S, Tu W G, Zhao Y X, Koh S W, Gao P Q, Seh Z W, Chan K R, Li H. Catalytic polysulfide conversion and physiochemical confinement for lithium-sulfur batteries[J]. Adv. Energy Mater., 2020, 10(22): 1904010.
[32] He J R, Manthiram A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries[J]. Energy Storage Mater., 2019, 20: 55-70.
[33] Wang P, Xi B J, Huang M, Chen W H, Feng J K, Xiong S L. Emerging catalysts to promote kinetics of lithium-sulfur batteries[J]. Adv. Energy Mater., 2021, 11(7): 2002893.
[34] Ogoke O, Hwang S, Hultman B, Chen M J, Karakalos S, He Y H, Ramsey A, Su D, Alexandridis P, Wu G. Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium-sulfur batteries[J]. J. Mater. Chem. A., 2019, 7(21): 13389-13399.
[35] Xing Z Y, Tan G Q, Yuan Y F, Wang B, Ma L, Xie J, Li Z S, Wu T P, Ren Y, Shahbazian-Yassar R, Lu J, Ji X L, Chen Z W. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes[J]. Adv. Mater., 2020, 32(31): 2002403.
[36] Wang Y C, Shi C S, Sha J W, Ma L Y, Liu E Z, Zhao N Q. Single-atom cobalt supported on nitrogen-doped three-dimensional carbon facilitating polysulfide conversion in lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2022, 14(22): 25337-25347.
[37] Faheem M, Li W L, Ahmad N, Yang L, Tufail M K, Zhou Y D, Zhou L, Chen R J, Yang W. Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries[J]. J. Colloid Interf. Sci., 2021, 585: 328-336.
[38] Li Y J, Xu P, Chen G L, Mou J R, Xue S F, Li K, Zheng F H, Dong Q F, Hu J H, Yang C H, Liu M L. Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst[J]. Chem. Eng. J., 2020, 380: 122595.
[39] Zhang X, Li Y, Li J D, Jia A Z, Sun D L, Wang Y J. Vertically rooting carbon nanotubes on cobalt-loaded hollow titanium dioxide spheres as conductive multifunctional sulfur hosts for superior lithium-sulfur performance[J]. J. Alloy. Compd., 2021, 854: 157267.
[40] Zhong M E, Guan J D, Feng Q J, Wu X W, Xiao Z B, Zhang W, Tong S, Zhou N, Gong D X. Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries[J]. Carbon, 2018, 128: 86-96.
[41] Li L X, Du X H, Liu G H, Zhang Y C, Zhang Z S, Li J D. Micro-/mesoporous Co-NC embedded three-dimensional ordered macroporous metal framework as Li-S battery cathode towards effective polysulfide catalysis and retention[J]. J. Alloy. Compd., 2022, 893: 162327.
[42] Wang M R, Zhou X F, Cai X, Wang H Q, Fang Y P, Zhong X H. Hierarchically porous, ultrathin N-doped carbon nanosheets embedded with highly dispersed cobalt nanoparticles as efficient sulfur host for stable lithium-sulfur batteries[J]. J. Energy Chem., 2020, 50: 106-114.
[43] Wang R R, Wu R B, Yan X X, Liu D, Guo P F, Li W, Pan H G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2022, 32(20): 2200424.
[44] Wang T, Cui G L, Zhao Y, Nurpeissova A, Bakenov Z. Porous carbon nanotubes microspheres decorated with strong catalyst cobalt nanoparticles as an effective sulfur host for lithium-sulfur battery[J]. J. Alloy. Compd., 2021, 853:157268.
[45] Liang X H, Wu X, Zeng S B, Xu W, Jiang X T, Lan L X. Fast conversion of lithium (poly)sulfides in lithium-sulfur batteries using three-dimensional porous carbon[J]. RSC Adv., 2021, 11(41): 25266-25273.
[46] Li J, Chen C, Qin F R, Jiang Y J, An H, Fang J, Zhang K, Lai Y Q. Mesoporous Co-N-C composite as a sulfur host for high-capacity and long-life lithium-sulfur batteries[J]. J. Mater. Sci., 2018, 53(18): 13143-13155.
[47] Li Y J, Fan J M, Zheng M S, Dong Q F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy Environ. Sci., 2016, 9(6): 1998-2004.
[48] Li J B, Chen C Y, Chen Y W, Li Z H, Xie W F, Zhang X, Shao M F, Wei M. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries[J]. Adv. Energy Mater., 2019, 9(42): 1901935.
[49] Abdelkader A A, Norouzi N, Rodene D D, Alzharani A, Gupta R B, El-Kadri H M. Electrocatalytic cathodes based on cobalt nanoparticles supported on nitrogen-doped porous carbon by strong electrostatic adsorption for advanced lithium-sulfur batteries[J]. Energy Fuel., 2020, 34(10): 13038-13047.
[50] Wang R, Yang J L, Chen X, Zhao Y, Zhao W G, Qian G Y, Li S N, Xiao Y G, Chen H, Ye Y S, Zhou G M, Pan F. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li-S battery[J]. Adv. Energy Mater., 2020, 10(9): 1903550.
[51] Hu W H, Zheng M B, Xu B Y, Wei Y, Zhu W, Li Q, Pang H. Design of hollow carbon-based materials derived from metal-organic frameworks for electrocatalysis and electrochemical energy storage[J]. J. Mater. Chem. A, 2021, 9(7): 3880-3917.
[52] Duan J L, Zou Y L, Li Z Y, Long B, Du Y Y. Hollow quasi-polyhedron structure of NiCoP with strong constraint sulfur effect for lithium sulfur battery[J]. J. Electroanal. Chem., 2019, 847: 113187.
[53] Li M M, Feng W J, Wang X. Complex hollow structures of cobalt(II) sulfide as a cathode for lithium-sulfur batteries[J]. Int. J. Electrochem. Sci., 2020, 15(1): 526-534.
[54] Zhao J L, Yang M, Yang N L, Wang J Y, Wang D. Hollow micro-/nanostructure reviving lithium-sulfur batteries[J]. Chem. Res. Chin. Univ., 2020, 36(3): 313-319.
[55] Hu C J, Yang C K, Yang J J, Han N N, Yuan R Y, Chen Y F, Liu H, Xie T H, Chen R D, Zhou H H, Liu W, Sun X M. An entangled cobalt-nitrogen-carbon nanotube array electrode with synergetic confinement and electrocatalysis of polysulfides for stable Li-S batteries[J]. ACS Appl. Energy Mater., 2019, 2(4): 2904-2912.
[56] Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Manipulating the redox kinetics of Li-S chemistry by porous hollow cobalt-B, N codoped-graphitic carbon polyhedrons for high performance lithium-sulfur batteries[J]. Carbon, 2019, 149: 564-571.
[57] Chen S X, Han X X, Luo J H, Liao J, Wang J, Deng Q, Zeng Z L, Deng S G. In situ transformation of LDH into hollow cobalt-embedded and N-doped carbonaceous microflowers as polysulfide mediator for lithium-sulfur batteries[J]. Chem. Eng. J., 2020, 385: 123457.
[58] Lei F F, Cao Y Q, Fu Y F, Li Y L, Wang R W, Qiu S L, Zhang Z T. In situ self-polymerization to form hollow graphitized carbon nanocages with embedded cobalt nanoparticles for high-performance lithium-sulfur batteries[J]. Chem. Eur. J., 2020, 26(58): 13295-13304.
[59] Su L, Zhang J Q, Chen Y, Yang W, Wang J, Ma Z P, Shao G J, Wang G X. Cobalt-embedded hierarchically-porous hollow carbon microspheres as multifunctional confined reactors for high-loading Li-S batteries[J]. Nano Energy, 2021, 85: 105981.
[60] Tan K, Liu Y, Tan Z L, Zhang J Y, Hou L R, Yuan C Z. High-yield and in situ fabrication of high-content nitrogen-doped graphene nanoribbons@Co/CoOOH as an integrated sulfur host towards Li-S batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3048-3059.
[61] Li C C, Qi S Y, Zhu L, Zhao Y, Huang R Z, He Y Y, Ge W N, Liu X B, Zhao M W, Xu L Q, Qian Y T. Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lithium-sulfur batteries[J]. Nano Today, 2021, 40: 101246.
[62] Mao W T, Ma C, Ni P, Li M L, Ding Y M, Zhang S J, Pan J L, Cao F P, Bao K Y. One-pot fabrication of crumpled N-doped graphene anchored with cobalt for high-performance lithium-sulfur batteries[J]. ChemElectroChem, 2020, 7(7): 1733-1738.
[63] Xu Q E, Zhou H F, Tang Q L, Hu A P, Xu Y L, Shen Y P, Kang C, Zhou Y, Chen X H. Co nanoparticles anchored on the Co-Nx active centers grafted nitrogen-doped graphene with enhanced performance for lithium-sulfur battery[J]. J. Alloy. Compd., 2022, 890: 161552.
[64] Li Z Q, Li C X, Ge X L, Ma J Y, Zhang Z W, Li Q, Wang C X, Yin L W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries[J]. Nano Energy, 2016, 23: 15-26.
[65] Zhang J F, Wang W J, Zhang Y G, Bakenoy Z, Zhao Y. Hierarchical rambutan-like CNTs-assembled N-Co-C@rGO composite as sulfur immobilizer for high-performance lithium-sulfur batteries[J]. ChemElectroChem, 2019, 6(17): 4565-4570.
[66] Zhou F, Qiao Z S, Zhang Y G, Xu W J, Zheng H F, Xie Q S, Luo Q, Wang L S, Qu B H, Peng D L. Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium-sulfur batteries[J]. Electrochim. Acta, 2020, 349: 136378.
[67] Lin T N, Jia H F, Ali U, Liu B Q, Zhang Q, Jin Z S, Li L, Zhang L Y, Wang C G. Facile "lotus blooming" strategy to synthesize a 3D carbon nanosheet/carbon nanotube framework with embedded Co nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Appl. Energy Mater., 2021, 4(10): 11343-11352.
[68] Gao X G, Huang Y, Sun X Y, Batool S, Li T H. Nanopolyhedron Co-C/cores triggered carbon nanotube in-situ growth inside carbon aerogel shells for fast and long-lasting lithium-sulfur batteries[J]. J. Power Sources, 2022, 520: 230913.
[69] Xiao Q H Q, Yang J L, Wang X D, Deng Y R, Han P, Yuan N, Zhang L, Feng M, Wang C A, Liu R P. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective[J]. Carbon Energy, 2021, 3(2): 271-302.
[70] Wang R, Chen Z, Sun Y, Chang C, Ding C, Wu R. Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries[J]. Chem. Eng. J., 2020, 399: 125686.
[71] Zhang Q F, Qiao Z S, Cao X R, Qu B H, Yuan J, Fan T E, Zheng H F, Cui J Q, Wu S Q, Xie Q S, Peng D L. Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium-sulfur batteries[J]. Nanoscale Horiz., 2020, 5(4): 720-729.
[72] Zhu Y Q, Sun W M, Luo J, Chen W X, Cao T, Zheng L R, Dong J C, Zhang J, Zhang M L, Han Y H, Chen C, Peng Q, Wang D S, Li Y D. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts[J]. Nat. Commun., 2018, 9: 3861.
[73] Wang J, Jia L J, Lin H Z, Zhang Y G. Single-atomic catalysts embedded on nanocarbon supports for high energy density lithium-sulfur batteries[J]. ChemSusChem, 2020, 13(13): 3404-3411.
[74] Zhang J, You C Y, Lin H Z, Wang J. Electrochemical kinetic modulators in lithium-sulfur batteries: from defect-rich catalysts to single atomic catalysts[J]. Energy Environ. Mater., 2021, 5(3): 731-750.
[75] Wang C G, Song H W, Yu C C, Ullah Z, Guan Z X, Chu R R, Zhang Y F, Zhao L Y, Li Q, Liu L W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. J. Mater. Chem. A, 2020, 8(6): 3421-3430.
[76] Wang F F, Li J, Zhao J, Yang Y X, Su C L, Zhong Y L, Yang Q H, Lu J. Single-atom electrocatalysts for lithium sulfur batteries: Progress, opportunities, and challenges[J]. ACS Materials Lett., 2020, 2(11): 1450-1463.
[77] Zhao W M, Shen J D, Xu X J, He W X, Liu L, Chen Z H, Liu J. Functional catalysts for polysulfide conversion in Li-S batteries: From micro/nanoscale to single atom[J]. Rare Met., 2022, 41(4): 1080-1100.
[78] Zhang B W, Sheng T, Liu Y D, Wang Y X, Zhang L, Lai W H, Wang L, Yang J P, Gu Q F, Chou S L, Liu H K, Dou S X. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nat. Commun., 2018, 9: 4082.
[79] Wu J B, Xiong L K, Zhao B T, Liu M, Huang L. Densely populated single atom catalysts[J]. Small Methods, 2019, 4(2): 1900540.
[80] Liang Z W, Shen J D, Xu X J, Li F K, Liu J, Yuan B, Yu Y, Zhu M. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries[J]. Adv. Mater., 2022, 34(30): 2200102.
[81] Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
[82] Li Y J, Chen G L, Mou J R, Liu Y Z, Xue S F, Tan T, Zhong W T, Deng Q, Li T, Hu J H, Yang C H, Huang K, Liu M L. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries[J]. Energy Storage Mater., 2020, 28: 196-204.
[83] Fan X Y, Chen S, Gong W B, Meng X D, Jia Y C, Wang Y L, Hong S, Zheng L, Zheng L R, Bielawski C W, Geng J X. A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics[J]. Energy Storage Mater., 2021, 41: 14-23.
[84] Wang Z S, Shen J D, Xu X J, Yuan J J, Zuo S Y, Liu Z B, Zhang D C, Liu J. In-situ synthesis of carbon-encapsulated atomic cobalt as highly efficient polysulfide electrocatalysts for highly stable lithium-sulfur batteries[J]. Small, 2022, 18(13): 2106640.
[85] Li Y J, Wu J B, Zhang B, Wang W Y, Zhang G Q, Seh Z W, Zhang N, Sun J, Huang L, Jiang J J, Zhou J, Sun Y M. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms[J]. Energy Storage Mater., 2020, 30: 250-259.
[86] Zhao C, Xu G L, Yu Z, Zhang L C, Hwang I, Mo Y X, Ren Y X, Cheng L, Sun C J, Ren Y, Zuo X B, Li J T, Sun S G, Amine K, Zhao T S. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites[J]. Nat. Nanotechnol., 2021, 16(2): 166-173.
文章导航

/