欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

基于阳极甘油氧化电催化的碱/酸混合电解制氢研究

  • 冯辛 ,
  • 刘博文 ,
  • 郭可鑫 ,
  • 范林丰 ,
  • 王根香 ,
  • 次素琴 ,
  • 温珍海
展开
  • a南昌航空大学,江西省持久性污染物控制与资源循环利用重点实验室,江西 南昌 330063
    b中国科学院福建物质结构研究所,中科院功能纳米结构设计与组装重点实验室,福建省纳米材料重点实验室,福建 福州,350002

收稿日期: 2022-06-01

  修回日期: 2022-06-23

  录用日期: 2022-08-29

  网络出版日期: 2022-08-31

Anodic Electrocatalysis of Glycerol Oxidation for Hybrid Alkali/Acid Electrolytic Hydrogen Generation

  • Xin Feng ,
  • Bo-Wen Liu ,
  • Ke-Xin Guo ,
  • Lin-Feng Fan ,
  • Gen-Xiang Wang ,
  • Su-Qin Ci ,
  • Zhen-Hai Wen
Expand
  • aKey Laboratory of Jiangxi Province for Persistent Pollutants Control, National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, Jiangxi, China
    bCAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
*Zhen-Hai Wen, Tel: (86-591) 6317353, E-mail address: wen@fjirsm.ac.cn
*Su-Qin Ci, Tel: (86-791) 83953378, E-mail address: sqci@nchu.edu.cn

Received date: 2022-06-01

  Revised date: 2022-06-23

  Accepted date: 2022-08-29

  Online published: 2022-08-31

摘要

耦合可再生电能的电解水制氢是一项极具前景的绿氢技术,该技术仍受限于阳极析氧反应(OER)动力学慢、过电位高等问题的限制。在阳极端采用热力学更容易的电氧化反应代替OER,可大幅降低电耗并且在阳极端获得增值产物,是电解制氢的一种新策略。甘油作为生物柴油生产的主要副产品且产能过剩,其电催化氧化(GOR)理论电位比OER低。基于此,本研究工作报道了一种耦合酸性析氢反应(HER)与碱性GOR的混合酸/碱双电解液的制氢电解器,其以泡沫镍(NF)支撑Co3O4纳米片(NS)电极(Co3O4·NSs/NF)为阳极,商用碳载铂修饰碳布电极为阴极。在阳极端,Co3O4·NSs/NF对GOR电催化表现出较低的过电位和转化为甲酸盐的高选择性。在该混合酸/碱双电解液电解槽中,仅仅需要额外施加0.55 V的外加电压,即可达到10 mA·cm-2的产氢电解电流密度,并可以在阳极将甘油高选择性地转化为甲酸盐,其中产氢的法拉第效率接近100%。本研究工作为电解制氢提供了一条节电、阳极增值转化的技术路线。

本文引用格式

冯辛 , 刘博文 , 郭可鑫 , 范林丰 , 王根香 , 次素琴 , 温珍海 . 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学, 2023 , 29(2) : 2215005 . DOI: 10.13208/j.electrochem.2215005

Abstract

Electrolytic hydrogen production is heavily restricted by high-energy consumption majorly due to the relatively high potential of anodic oxygen evolution reaction (OER). Development of OER-alternative reaction at the anode has been recently proposed as a promising pathway to address the associated issues. In this work, we report a hybrid acid/alkali dual-electrolyte electrolyzer by coupling acidic hydrogen evolution reaction (HER) using commercial Pt/C cathode with alkaline electrocatalytic glycerol oxidation (GOR) which is implemented by developing a nickel foam (NF) supporting Co3O4 nanosheets anode that shows low overpotential and high selectivity toward GOR for formate production. The hybrid acid/alkali electrolyzer only requires an applied voltage of 0.55 V to achieve the electrolytic current density of 10 mA·cm-2 for glycerol conversion into formate at the anode and H2 production at the cathode with the Faraday efficiency of about 100%. The present work may open a new avenue to maximize the electron utilization efficiency and implement the energy-saving green route for H2 generation.

参考文献

[1] Rahman M Z, Kibria M G, Mullins C B. Metal-free photocatalysts for hydrogen evolution[J]. Chem. Soc. Rev., 2020, 49(6): 1887-1931.
[2] Li Z S, Li B L, Peng S H, Li D H, Yang S Y, Fang Y P. Novel visible light-induced g-C3N4 quantum dot/BiPO4 nanocrystal composite photocatalysts for efficient degradation of methyl orange[J]. RSC Adv., 2014, 4(66): 35144-35148.
[3] Navarro R M, Pena M A, Fierro J L G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass[J]. Chem. Rev., 2007, 107(10): 3952-3991.
[4] Li X M, Hao X G, Abudula A, Guan G Q. Nanostructured catalysts for electrochemical water splitting: current state and prospects[J]. J. Mater. Chem., 2016, 4(31): 11973-12000.
[5] He L Q, Zhang W B, Mo Q J, Huang W J, Yang L C, Gao Q S. Molybdenum carbide-oxide heterostructures: In situ surface reconfiguration toward efficient electrocatalytic hydrogen evolution[J]. Angew. Chem. Int. Ed., 2020, 59(9): 3544-3548.
[6] Zhu J, Hu L S, Zhao P X, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2): 851-918.
[7] Mallouk T E. Water electrolysis: Divide and conquer[J]. Nat. Chem., 2013, 5(5): 362-363.
[8] Li X R, Wang C L, Xue H G, Pang H, Xu Q. Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction[J]. Coord. Chem. Rev., 2020, 422: 213468.
[9] Xu Q C, Jiang H, Duan X Z, Jiang Z, Hu Y J, Boettcher S W, Zhang W Y, Guo S J, Li C Z. Fluorination-enabled reconstruction of nife electrocatalysts for efficient water oxidation[J]. Nano Lett., 2021, 21(1): 492-499.
[10] Cao S S, Qi J D, Lei F C, Wei Z M, Lou S S, Yang X Y, Guo Y Q, Hao P, Xie J F, Tang B. Reduction-induced surface reconstruction to fabricate cobalt hydroxide/molybdenum oxide hybrid nanosheets for promoted oxygen evolution reaction[J]. Chem. Eng. J., 2021, 413: 127540.
[11] Lu S L, Zhao B, Chen M X, Wang L, Fu X Z, Luo J L. Electrolysis of waste water containing aniline to produce polyaniline and hydrogen with low energy consumption[J]. Int. J. Hydrogen Energy, 2020, 45(43): 22419-22426.
[12] Ding Y, Xue Q, Hong Q L, Li F M, Jiang Y C, Li S N, Chen Y. Hydrogen and potassium acetate Co-production from electrochemical reforming of ethanol at ultrathin cobalt sulfide nanosheets on nickel foam[J]. ACS Appl. Mater. Interfaces, 2021, 13(3): 4026-4033.
[13] Sun F C, Zhou Y, You Z H, Xia H H, Tuo Y X, Wang S T, Jia C P, Zhang J. Bi-functional Fe3O4/Au/CoFe-LDH sandwich-structured electrocatalyst for asymmetrical electrolyzer with low operation voltage[J]. Small, 2021: e2103307.
[14] Duan Y J, Liu Z L, Zhao B, Liu J H. Raspberry-like Pd3Pb alloy nanoparticles: Superior electrocatalytic activity for ethylene glycol and glycerol oxidation[J]. RSC Adv., 2020, 10(27): 15769-15774.
[15] Zheng D D, Li J W, Ci S Q, Cai P W, Ding Y C, Zhang M T, Wen Z H. Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen[J]. Appl. Catal., B, 2020, 277: 119178.
[16] Kim H J, Kim Y, Lee D E, Kim J R, Chae H J, Jeong S Y, Kim B S, Lee J, Huber G W, Byun J, Kim S, Han J. Coproducing value-added chemicals and hydrogen with electrocatalytic glycerol oxidation technology: Experimental and techno-economic investigations[J]. ACS Sustain. Chem. Eng., 2017, 5(8): 6626-6634.
[17] Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. From glycerol to value-added products[J]. Angew. Chem. Int. Ed., 2007, 46(24): 4434-4440.
[18] Park Y J, Yang J W. Glycerol conversion to high-value chemicals: The implication of unnatural α-amino acid syntheses using natural resources[J]. Green Chem., 2019, 21(10): 2615-2620.
[19] Chen Y X, Lavacchi A, Miller H A, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nat. Commun., 2014, 5: 4036.
[20] Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: New important derivatives of glycerol[J]. Green Chem., 2008, 10(1): 13-30.
[21] Anitha M, Kamarudin S K, Kofli N T. The potential of glycerol as a value-added commodity[J]. Chem. Eng. J., 2016, 295: 119-130.
[22] Dodekatos G, Schünemann S, Tüysüz H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catal., 2018, 8(7): 6301-6333.
[23] Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited[J]. Green Chem., 2010, 12(4): 539-554.
[24] Fan L F, Liu B W, Liu X, Senthilkumar N, Wang G X, Wen Z H. Recent progress in electrocatalytic glycerol oxidation[J]. Energy Technol., 2020, 9(2): 2000804.
[25] Huang L, Sun J Y, Cao S H, Zhan M, Ni Z R, Sun H J, Chen Z, Zhou Z Y, Sorte E G, Tong Y Y J, Sun S G. Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C[J]. ACS Catal., 2016, 6(11): 7686-7695.
[26] Liu Y F, Yu W J, Raciti D, Gracias D H, Wang C. Electrocatalytic oxidation of glycerol on platinum[J]. J. Phys. Chem. C, 2018, 123(1): 426-432.
[27] Lee S, Kim H J, Lim E J, Kim Y, Noh Y, Huber G W, Kim W B. Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process[J]. Green Chem., 2016, 18(9): 2877-2887.
[28] Tang S S, Li X G, Courté M, Peng J J, Fichou D. Hierarchical Cu(OH)2@Co(OH)2Nanotrees for water oxidation electrolysis[J]. ChemCatChem, 2020, 12(16): 4038-4043.
[29] Lv J J, Wang L M, Li R S, Zhang K Y, Zhao D F, Li Y Q, Li X J, Huang X B, Wang G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction[J]. ACS Catal., 2021, 11(23): 14338-14351.
[30] Kou Y, Liu J, Li Y B, Qu S X, Ma C, Song Z S, Han X P, Deng Y D, Hu W B, Zhong C. Electrochemical oxidation of chlorine-doped Co(OH)2 nanosheet arrays on carbon cloth as a bifunctional oxygen electrode[J]. ACS Appl. Mater. Interfaces, 2018, 10(1): 796-805.
[31] Ray C, Lee S C, Jin B J, Kundu A, Park J H, Jun S C. Conceptual design of three-dimensional CoN/Ni3N-coupled nanograsses integrated on N-doped carbon to serve as efficient and robust water splitting electrocatalysts[J]. J. Mater. Chem. A, 2018, 6(10): 4466-4476.
[32] Fan L F, Ji Y X, Wang G X, Chen J X, Chen K, Liu X, Wen Z H. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production[J]. J. Am. Chem. Soc., 2022, 144(16): 7224-7235.
[33] Ding Y C, Cai P W, Wen Z H. Electrochemical neutralization energy: from concept to devices[J]. Chem. Soc. Rev., 2021, 50(3): 1495-1511.
[34] Wang G X, Chen J X, Li K K, Huang J H, Huang Y C, Liu Y J, Hu X, Zhao B S, Yi L C, Jones T W, Wen Z H. Cost-effective and durable electrocatalysts for Co-electrolysis of CO2conversion and glycerol upgrading[J]. Nano Energy, 2022, 92: 106751.
[35] Xu Y, Liu M Y, Wang S Q, Ren K L, Wang M Z, Wang Z Q, Li X N, Wang L, Wang H J. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays[J]. Appl. Catal., B, 2021, 298: 120493.
[36] Vo T G, Ho P Y, Chiang C Y. Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide[J]. Appl. Catal. B, 2022, 300: 120723.
[37] Xie Y A, Zhou Z Y, Yang N J, Zhao G H. An overall reaction integrated with highly selective oxidation of 5‐hydroxymethylfurfural and efficient hydrogen evolution[J]. Adv. Funct. Mater., 2021, 31(34): 2102886.
文章导航

/