欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

电沉积纳米锥镍的生长机理及其性能的研究

  • 倪修任 ,
  • 张雅婷 ,
  • 王翀 ,
  • 洪延 ,
  • 陈苑明 ,
  • 苏元章 ,
  • 何为 ,
  • 陈先明 ,
  • 黄本霞 ,
  • 续振林 ,
  • 李毅峰 ,
  • 李能彬 ,
  • 杜永杰
展开
  • 1.电子科技大学材料与能源学院, 四川 成都 610054
    2.珠海越亚半导体股份有限公司, 广东 珠海 519175
    3.厦门柔性电子研究院有限公司&厦门弘信电子科技集团股份有限公司,福建 厦门361101
    4.珠海能动科技光学产业有限公司, 广东 珠海 519175

收稿日期: 2022-05-06

  修回日期: 2022-06-06

  网络出版日期: 2022-07-28

Mechanism and Application of Nickel Nano-Cone by Electrodeposition on a Flexible Substrate

  • Xiu-Ren Ni ,
  • Ya-Ting Zhang ,
  • Chong Wang ,
  • Yan Hong ,
  • Yuan-Ming Chen ,
  • Yuan-Zhang Su ,
  • Wei He ,
  • Xian-Ming Chen ,
  • Ben-Xia Huang ,
  • Zhen-Lin Xu ,
  • Yi-Feng Li ,
  • Neng-Bin Li ,
  • Yong-Jie Du
Expand
  • 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
    2. Zhuhai ACCESS Semiconductor Co., Ltd, Zhuhai 519175, Guangdong, China
    3. Xiamen Institute of Flexible Electronics Co., Ltd & Xiamen Hongxin Electron-Tech Co., Ltd, Xiamen 361101, Fujian, China
    4. Zhuhai Dynamic Technology Optical Industry Co., Ltd,Zhuhai 519175, Guangdong, China
* (86-28)61830951, E-mail: hongyan@uestc.edu.cn

Received date: 2022-05-06

  Revised date: 2022-06-06

  Online published: 2022-07-28

摘要

本文通过恒电流沉积法在柔性覆铜基板上制备了具有纳米锥阵列结构的黑色镍层,制备的纳米锥镍的底部约为200 nm, 高度约为1 μm,且大小均一,分布致密。本文探讨了镍电沉积中电流密度和主盐浓度对纳米锥镍结构形貌的影响,结果表明低电流密度和高主盐浓度有利于纳米锥镍的形成。电沉积过程中保持镍离子的供应充足是锥镍结构产生的关键因素之一, 而高电流密度会影响镍离子浓度的浓差极化,从而影响锥镍的成核过程。温度、主盐浓度以及结晶调整剂的变化会导致镍颗粒的形貌发生圆包状和针锥状结构的相互转化。温度升高具有一定的细化晶粒作用,锥镍结构需要在大于50 oC的条件下生成。结晶调整剂能够改变沉积过程中的晶面择优生长,且可以调控镍晶粒的形貌,使得生成的锥结构分布均匀, 颗粒细致。结果表明,在4.0 mol·L-1 NH4Cl和1.68 mol·L-1 NiCl2·6H2O体系中沉积出分布均匀的纳米锥镍阵列结构。本文利用氯化铵作为纳米锥镍的晶体改性剂,通过分子动力学模拟理论上分析了NH4+在镍表面的吸附过程。计算结果表明镍不同晶面上NH4+吸附能的差异引起各晶面镍沉积速率的差异, 从而导致纳米锥镍阵列的形成。本文呢进一步结合形貌表征,提出了纳米锥镍阵列的电沉积生长的两步生长机理,包括前期的成核生长和后期的核生长过程,前期成核过程为优势生长,生成大量的晶核, 为锥镍的生长提供了生长位点,而后期的核生长过程表现为锥状镍核的择优生长, 最终形成完整均匀的锥镍阵列结构。本文制备的纳米锥镍结构还具有优异的亲水性和良好的吸光效果, 对于近紫外和可见光的吸收率大于95%, 具有较好的应用前景。

本文引用格式

倪修任 , 张雅婷 , 王翀 , 洪延 , 陈苑明 , 苏元章 , 何为 , 陈先明 , 黄本霞 , 续振林 , 李毅峰 , 李能彬 , 杜永杰 . 电沉积纳米锥镍的生长机理及其性能的研究[J]. 电化学, 2022 , 28(7) : 2213008 . DOI: 10.13208/j.electrochem.2213008

Abstract

Nano-array structure possesses promising prospect in power supply, optical device and electronic manufacturing. In this paper, a black nickel nano-cone array was prepared on a flexible substrate by galvanostatic deposition and the corresponding factors involved in the fabrication of nickel nano-cone array was explored. Experimental results showed that a large current density and low main salt concentration were not favored to the formation of cone nickel structure. It was also found that ammonium chloride, as the crystal modifier, was crucial to deposit the uniform nano-cone array. In addition, the growth mechanism of nickel nano-cone was further studied by molecular dynamics simulation. The excellent wettability and light absorption of nickel nano-cone array were investigated, which demonstrates potential applications of the nickel nano-cone array.

参考文献

[1] Wang F, Zuo Z C, Li L, He F, Li Y L. Graphdiyne nanostructure for high-performance lithium-sulfur batteries[J]. Nano Energy, 2020, 68: 104307.
[2] Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: Possibilities and challenges[J]. Adv. Mater., 2012, 24(2): 229-251.
[3] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J]. Science, 1997, 277(5334): 1971-1975.
[4] Su Z J, Yang C, Xie B H, Lin Z Y, Zhang Z X, Liu J P, Li B H, Kang F Y, Wong C P. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitort[J]. Energy Environ. Sci., 2014, 7(8): 2652-2659.
[5] Zhang S C, Du Z J, Lin R X, Jiang T, Liu G R, Wu X M, Weng D S. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries[J]. Adv. Mater., 2010, 22(47): 5378-5382.
[6] Wang X H, Yang Z B, Sun X L, Li X W, Wang D S, Wang P, He D Y. NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries[J]. J. Mater. Chem., 2011, 21(27): 9988-9990.
[7] Xia Y Y, Mo X, Ling H Q, Hang T, Li M. Facile fabrication of Au nanoparticles-decorated Ni nanocone arrays as effective surface-enhanced Raman scattering substrates[J]. J. Electrochem. Soc., 2016, 163(10): D575-D578.
[8] Peng Z M, Yang H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property[J]. Nano Today, 2009, 4(2): 143-164.
[9] Lohse S E, Murphy C J. The quest for shape control: A history of gold nanorod synthesis[J]. Chem. Mat., 2013, 25(8): 1250-1261.
[10] Zhou X S, Wan L J, Guo Y G. Synthesis of MoS2 nano-sheet-graphene nanosheet hybrid materials for stable lithium storage[J]. Chem. Commun., 2013, 49(18): 1838-1840.
[11] Dow W P, Chen H H, Yen M Y, Chen W H, Hsu K H, Chuang P Y, Ishizuka H, Sakagawa N, Kimizuka R. Through-hole filling by copper electroplating[J]. J. Electrochem. Soc., 2008, 155(12): D750-D757.
[12] Huang Q, Lyons T W, Sides W D. Electrodeposition of cobalt for interconnect application: Effect of dimethylglyoxime[J]. J. Electrochem. Soc., 2016, 163(13): D715-D721.
[13] Moffat T P, Wheeler D, Josell D. Electrodeposition of copper in the SPS-PEG-Cl additive system-I. Kinetic measurements: Influence of SPS[J]. J. Electrochem. Soc., 2004, 151(4): C262-C271.
[14] Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly(1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
[15] Dow W P, Chiu Y D, Yen M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. J. Electrochem. Soc., 2009, 156(4): D155-D167.
[16] Dow W P, Lu C W, Lin J Y, Hsu F C. Highly selective Cu electrodeposition for filling through silicon holes[J]. Electrochem. Solid State Lett., 2011, 14(6): D63-D67.
[17] Gu C, Tu J. One-step fabrication of nanostructured Ni film with Lotus effect from deep eutectic solvent[J]. Langmuir, 2011, 27(16): 10132-10140.
[18] Walter E C, Zach M P, Favier F, Murray B, Inazu K, Hemminger J C, Penner R M. Electrodeposition of porta-ble metal nanowire arrays[M]. USA: Sple-Int. Soc. Optical Engineering, 2002.
[19] Yin A J, Li J, Jian W, Bennett A J, Xu J M. Fabrication of highly ordered metallic nanowire arrays by electrodeposition[J]. Appl. Phys. Lett., 2001, 79(7): 1039-1041.
[20] Huang B H, Zhang X F, Cai J N, Liu W K, Lin S. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR[J]. J. Appl. Ele-ctrochem., 2019, 49(8): 767-777.
[21] Wu F F, Ze H J, Chen S H, Gao X F. High-efficiency boiling heat transfer interfaces composed of electroplated copper nanocone cores and low-thermal-conductivity nickel nanocone coverings[J]. ACS Appl. Mater. Interfaces, 2020, 12(35): 39902-39909.
[22] Hang T, Hu A M, Ling H Q, Li M, Mao D L. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition[J]. Appl. Surf. Sci., 2010, 256(8): 2400-2404.
[23] Ebrahimi F, Bourne G R, Kelly M S, Matthews T E. Mechanical properties of nanocrystalline nickel produced by electrodeposition[J]. Nanostruct. Mater., 1999, 11(3): 343-350.
[24] Elsherik A M, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition[J]. J. Mater. Sci., 1995, 30(22): 5743-5749.
[25] Chen Z, Zhu C, Cai M L, Yi X Y, Li J H. Growth and morphology tuning of ordered nickel nanocones routed by one-step pulse electrodeposition[J]. Appl. Surf. Sci., 2020, 508: 145291.
[26] Lai Z Q, Wang S X, Wang C, Hong Y, Zhou G Y, Chen Y M, He W, Peng Y Q, Xiao D J. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Comput. Mater. Sci., 2018, 147: 95-102.
[27] Wang C, An M Z, Yang P X, Zhang J Q. Prediction of a new leveler (N-butyl-methyl piperidinium bromide) for through-hole electroplating using molecular dynamics simulations[J]. Electrochem. Commun., 2012, 18: 104-107.
[28] Sun H, Ren P, Fried J R. The compass force field: Parameterization and validation for phosphazenes[J]. Comput. Theor. Polym. Sci., 1998, 8(3-4): 363-363.
[29] Hackett J C. Chemical reactivity theory: A density functional view[J]. J. Am. Chem. Soc., 2010, 132(21): 7558-7558.
[30] Jiang Q, Tallury S S, Qiu Y P, Pasquinelli M A. Interfacial characteristics of a carbon nanotube-polyimide nano-composite by molecular dynamics simulation[J]. Nano-technol. Rev., 2020, 9(1): 136-145.
[31] Premkumar S, Jawahar A, Mathavan T, Dhas M K, Sathe V G, Benial A M F. Dft calculation and vibrational spectroscopic studies of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine[J]. Spectroc. Acta Pt. A-Molec. Bio-molec. Spectr., 2014, 129: 74-83.
[32] Shen J, Li Y, He J H. On the Kubelka-Munk absorption coefficient[J]. Dyes Pigment., 2016, 127: 187-188.
[33] Tang M X, Zhang S T, Qiang Y J, Chen S J, Luo L, Gao J Y, Feng L, Qin Z J. 4,6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Adv., 2017, 7(64): 40342-40353.
[34] Oláh J, Van Alsenoy C, Sannigrahi A B. Condensed fukui functions derived from stockholder charges: Assess-ment of their performance as local reactivity descriptors[J]. J. Phys. Chem. A, 2002, 106(15): 3885-3890.
[35] Lai Z Q, Wang C, Huang Y Z, Chen Y M, Wang S X, Hong Y, Zhou G Y, He W, Su X H, Sun Y K, Tao Y G, Lu X Y. Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence[J]. Mater. Today Commun., 2020, 24: 100973.
[36] Saraireh S A, Altarawneh M, Tarawneh M A. Nanosystem’s density functional theory study of the chlorine adsorption on the Fe(100) surface[J]. Nanotechnol. Rev., 2021, 10(1): 719-727.
[37] Tarasevich Y I. The surface energy of hydrophilic and hydrophobic adsorbents[J]. Colloid J., 2007, 69(2): 212-220.
[38] Zhu J, Yu Z F, Burkhard G F, Hsu C M, Connor S T, Xu Y Q, Wang Q, McGehee M, Fan S H, Cui Y. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays[J]. Nano Lett., 2009, 9(1): 279-282.
[39] Xu Q, Qian X, Qu Y Q, Hang T, Zhang P, Li M, Gao L. Electrodeposition of Cu2O nanostructure on 3D Cu micro-cone arrays as photocathode for photoelectrochemical water reduction[J]. J. Electrochem. Soc., 2016, 163(10): H976-H981.
[40] Li M H, Keller P, Li B, Wang X G, Brunet M. Light-driven side-on nematic elastomer actuators[J]. Adv. Mater., 2003, 15(7-8): 569-572.
文章导航

/