欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

低共熔溶剂辅助合成新型的网状纳米结构用于加速甲酸电氧化

  • 张俊明 ,
  • 张小杰 ,
  • 陈瑶 ,
  • 房英健 ,
  • 樊友军 ,
  • 贾建峰
展开
  • a山西师范大学化学与材料科学学院,磁性分子与磁信息材料教育部重点实验室,山西 太原 030031
    b广西师范大学化学与药学学院,广西低碳能源材料重点实验室,广西 桂林 541004
    c昆山良品丝印器材有限公司,江苏 昆山 215300

收稿日期: 2022-06-23

  修回日期: 2022-07-19

  录用日期: 2023-07-21

  网络出版日期: 2022-07-29

Deep Euteceic Solvents-Assisted Synthesis of Novel Network Nanostructures for Accelerating Formic Acid Electrooxidation

  • Jun-Ming Zhang ,
  • Xiao-Jie Zhang ,
  • Yao Chen ,
  • Ying-Jian Fang ,
  • You-Jun Fan ,
  • Jian-Feng Jia
Expand
  • aKey Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
    bGuangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China
    cKunshan Superior Silk Screen Printing Material Co., LTD, Kunshan 215300, Jiangsu, China
Tel: (86-351)2051192, E-mail: jiajf@dns.sxnu.edu.cn
Tel: (86-773)5846279, E-mail: youjunfan@mailbox.gxnu.edu.cn
* Tel: (86-351)2051192, E-mail: zhangjunming@sxnu.edu.cn

Received date: 2022-06-23

  Revised date: 2022-07-19

  Accepted date: 2023-07-21

  Online published: 2022-07-29

摘要

低共熔溶剂(DESs)是一种用于可控合成金属纳米结构的溶剂。在氯化胆碱-尿素DESs中,使用抗坏血酸作为还原剂可以制备由交错的纳米片和纳米球组成的花状Pd纳米颗粒,并且其自发地转化为三维网络纳米结构。此纳米网状结构的形成机制也有系统的研究,其中,DESs作为溶剂和软模板用于形成3D花状钯网络纳米结构(Pd-FNNs),CTAB和NaOH的用量在Pd-FNNs的各向异性生长和生成中起着至关重要的作用。Pd较低的电催化性能是阻碍燃料电池商业化应用的主要挑战之一。然而,具有较低表面能和丰富晶界的3D Pd-FNNs对甲酸氧化反应表现出增强的电催化活性和稳定性,其质量活性和本征活性分别是商业Pd黑催化剂的2.7和1.4倍。因此,此策略为合成独特的Pd基纳米结构提供了一种可行的路径。

本文引用格式

张俊明 , 张小杰 , 陈瑶 , 房英健 , 樊友军 , 贾建峰 . 低共熔溶剂辅助合成新型的网状纳米结构用于加速甲酸电氧化[J]. 电化学, 2023 , 29(5) : 2206231 . DOI: 10.13208/j.electrochem.2206231

Abstract

Deep eutectic solvents (DESs) have been reported as a type of solvent for the controllable synthesis of metal nanostructures. Interestingly, flower-like palladium (Pd) nanoparticles composed of staggered nanosheets and nanospheres are spontaneously transformed into three-dimensional (3D) network nanostructures in choline chloride-urea DESs using ascorbic acid as a reducing agent. Systematic studies have been carried out to explore the formation mechanism, in which DESs itself acts as a solvent and soft template for the formation of 3D flower-like network nanostructures (FNNs). The amounts of hexadecyl trimethyl ammonium bromide and sodium hydroxide also play a crucial role in the anisotropic growth and generation of Pd-FNNs. The low electrocatalytic performance of Pd is one of the major challenges hindering the commercial application of fuel cells. Whereas, the 3D Pd-FNNs with lower surface energy and abundant grain boundaries exhibited the enhanced electrocatalytic activity and stability toward formic acid oxidation, by which the mass activity and specific activity were 2.7 and 1.4 times higher than those of commercial Pd black catalyst, respectively. Therefore, the current strategy provides a feasible route for the synthesis of unique Pd-based nanostructures.

参考文献

[1] Zhang S, Xia R, Su Y, Zou Y, Hu C, Yin G, Hensen E J M, Ma X, Lin Y. 2D surface induced self-assemble of Pd nanocrystals into nanostrings for enhanced formic acid electroxidation[J]. J. Mater. Chem. A, 2020, 8(33):17128-17135.
[2] Ding J, Liu Z, Liu X R, Liu B, Liu J, Deng Y D, Han X P, Hu W B, Zhong C. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation[J]. Angew. Chem. Int. Ed., 2020, 59(13): 5092-5101.
[3] Huang L, Zhan M, Wang Y C, Lin Y F, Liu S, Yuan T, Yang H, Sun S G. Syntheses of carbon paper supported high-index faceted Pt nanoparticles and their performance in direct formic acid fuel cells[J]. J. Electrochem., 2016, 22(2): 123-128.
[4] Jiang M C, Meng X M, Zhang W L, Huang H W, Wang F Q, Wang S, Ouyang Y R, Yuan W Y, Zhang L Y. Facile synthesis of heterophase sponge-like Pd toward enhanced formic acid oxidation[J]. Electrochem. Commun., 2021, 126(1): 107004-107008.
[5] Lv F, Huang B L, Feng J R, Zhang W Y, Wang K, Li N, Zhou J H, Zhou P, Yang W X, Du Y P, Su D, Guo S J. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst[J]. Natl. Sci. Rev., 2021, 8(9): 1-11.
[6] Zheng J Z, Zeng H J, Tan C H, Zhang T M, Zhao B, Guo W, Wang H B, Sun Y H, Jiang L. Coral-like PdCu alloy nanoparticles act as stable electrocatalysts for highly efficient formic acid oxidation[J]. ACS Sustainable Chem. Eng., 2019, 7(18): 15354-15360.
[7] Zhang J M, Shen L F, Jiang Y X, Sun S G. Random alloy and intermetallic nanocatalysts in fuel cell reactions[J]. Nanoscale, 2020, 12(38): 19557-19581.
[8] Perales-Rondon J V, Ferre-Vilaplana A, Feliu J M, Herrero E. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface[J]. J. Am. Chem. Soc., 2014, 136(38): 13110-13113.
[9] Zhang J M, Wang R X, Nong R J, Li Y, Zhang X J, Zhang P Y, Fan Y J. Hydrogen co-reduction synthesis of PdPtNi alloy nanoparticles on carbon nanotubes as enhanced catalyst for formic acid electrooxidation[J]. Int. J. Hydrogen Energy, 2017, 42(10): 7226-7234.
[10] Shen T, Zhang J J, Chen K, Deng S F, Wang D L. Recent progress of palladium-based electrocatalysts for the formic acid oxidation reaction[J]. Energ. Fuel., 2020, 34(8): 9137-9153.
[11] Yan Y C, Li X, Tang M, Zhong H, Huang J B, Bian T, Jiang Y, Han Y, Zhang H, Yang D R. Tailoring the edge sites of 2D Pd nanostructures with different fractal dimensions for enhanced electrocatalytic performance[J]. Adv. Sci., 2018, 5(8): 1800430-1800436.
[12] Ren M J, Zou L L, Chen J, Yuan T, Huang Q H, Zhang H F, Yang H, Feng S L. Electrocatalytic oxidation of formic acid on Pd/Ni heterostructured catalyst[J]. J. Electrochem., 2012, 18(6): 515-520.
[13] Xiao C, Tian N, Zhou Z Y, Sun S G. Electrochemical preparations and applications of nano-catalysts with high-index facets[J]. J. Electrochem., 2020, 26(1): 61-72.
[14] Zhang L Y, Ouyang Y, Wang S, Gong Y, Jiang M, Yuan W, Li C M. Ultrafast synthesis of uniform 4-5 atoms-thin layered tremella-like Pd nanostructure with extremely large electrochemically active surface area for formic acid oxidation[J]. J. Power Sources, 2020, 447(1): 227248-227254.
[15] Poerwoprajitno A R, Gloag L, Cheong S, Gooding J J, Tilley R D. Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis[J]. Nanoscale, 2019, 11(9): 18995-19011.
[16] Xu B Y, Zhang Y, Li L G, Shao Q, Huang X Q. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond[J]. Coordin. Chem. Rev., 2022, 459(5): 214388-214419.
[17] Xiao C, Lu B A, Xue P, Tian N, Zhou Z Y, Lin X, Lin W F, Sun S G. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts[J]. Joule, 2020, 4(12):2562-2598.
[18] Gong Y, Liu X, Gong Y, Wu D, Xu B, Bi L, Zhang L Y, Zhao X S. Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation[J]. J. Colloid Interf. Sci., 2018, 530(11):189-195.
[19] Xu Y, Xu R, Cui J H, Liu Y, Zhang B. One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance[J]. Chem. Commun., 2012, 48(32): 3881-3883.
[20] Yuan T, Chen H Y, Ma X, Feng J J, Yuan P X, Wang A J. Simple synthesis of self-supported hierarchical AuPd alloyed nanowire networks for boosting electrocatalytic activity toward formic acid oxidation[J]. J. Colloid Interf. Sci., 2018, 513(3): 324-330.
[21] Zhang X F, Chen Y, Zhang L, Wang A J, Wu L J, Wang Z G, Feng J J. Poly-L-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution[J]. J. Colloid Interf. Sci., 2018, 516(4): 325-331.
[22] Cui X, Xiao P, Wang J, Zhou M, Guo W L, Yang Y, He Y J, Wang Z W, Yang Y K, Zhang Y H, Lin Z Q. Highly branched metal alloy networks with superior activities for the methanol oxidation reaction[J]. Angew. Chem. Int. Ed., 2017, 56(16): 4488-4493.
[23] Zhang Q B, Hua Y X. Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride-urea deep eutectic solvent: nucleation and growth mechanism[J]. Phys. Chem. Chem. Phys., 2014, 16(48): 27088-27095.
[24] Kumar-Krishnan S, Prokhorov E, Arias de Fuentes O, Ram?rez M, Bogdanchikova N, Sanchez I C, Mota-Morales J D, Luna-Barcenas G. Temperature-induced Au nanostructure synthesis in a nonaqueous deep-eutectic solvent for high performance electrocatalysis[J]. J. Mater. Chem. A, 2015, 3(31): 15869-15875.
[25] Wagle D V, Zhao H, Baker G A. Deep eutectic solvents: sustainable media for nanoscale and functional materials[J]. Acc. Chem. Res., 2014, 47(8): 2299-2308.
[26] Wei L, Fan Y J, Tian N, Zhou Z Y, Zhao X Q, Mao B W, Sun S G. Electrochemically shape-controlled synthesis in deep eutectic solvents—A new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity[J]. J. Phys. Chem. C, 2012, 116(2): 2040-2044.
[27] Wei L, Fan Y J, Wang H H, Tian N, Zhou Z Y, Sun S G. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation[J]. Electrochim. Acta, 2012, 76(8): 468-474.
[28] Wei L, Xu C D, Huang L, Zhou Z Y, Chen S P, Sun S G. Electrochemically shape-controlled synthesis of Pd concave disdyakis triacontahedra in deep eutectic solvent[J]. J. Phys. Chem. C, 2016, 120(29): 15569-15577.
[29] Yin X, Chen Q Y, Tian P, Zhang P, Zhang Z Y, Voyles P M, Wang X D. Ionic layer epitaxy of nanometer-thick palladium nanosheets with enhanced electrocatalytic properties[J]. Chem. Mater., 2018, 30(10): 3308-3314.
[30] Jana R, Subbarao U, Peter S C. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol[J]. J. Power Sources, 2016, 301(1): 160-169.
[31] Shan J F, Lei Z, Wu W, Tan Y Y, Cheng N C, Sun X L. Highly active and durable ultrasmall Pd nanocatalyst encapsulated in ultrathin silica layers by selective deposition for formic acid oxidation[J]. ACS Appl. Mater. Interfaces, 2019, 11(46): 43130-43137.
[32] Huang H W, Ruditskiy A, Choi S I, Zhang L, Liu J Y, Ye Z Z, Xia Y N. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties[J]. ACS Appl. Mater. Interfaces, 2017, 9(36): 31203-31212.
[33] Saravani H, Farsadrooh M, Mollashahi M S, Hajnajafi M, Douk A S. Two-dimensional engineering of Pd nanosheets as advanced electrocatalysts toward formic acid oxidation[J]. Int. J. Hydrogen Energ., 2020, 45(41): 21232-21240.
[34] Lou Y Y, Xiao C, Fang J, Sheng T, Ji L, Zheng Q, Xu B B, Tian N, Sun S G. The high activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination[J]. Phys. Chem. Chem. Phys., 2022, 24(6): 3896-3904.
[35] Yu N F, Tian N, Zhou Z Y, Sheng T, Lin W F, Ye J Y, Liu S, Ma H B, Sun S G. Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst[J]. ACS Catal., 2019, 9(4): 3144-3152.
[36] Xiao C, Tian N, Li W Z, Qu X M, Du J H, Lu B A, Xu B B, Zhou Z Y, Sun S G. Shape transformations of Pt nanocrystals enclosed with high-index facets and low-index facets[J]. CrystEngComm, 2021, 23(38): 6655-6660.
[37] Shen T, Chen S J, Zeng R, Gong M X, Zhao T H, Lu Y, Liu X P, Xiao D D, Yang Y, Hu J P, Wang D L, Xin H L, Abruna H D. Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic[J]. ACS Catal., 2020, 10(17): 9977-9985.
[38] Shi Y F, Lyu Z H, Cao Z M, Xie M H, Xia Y N. How to remove the capping agent from Pd nanocubes without destructing their surface structure for the maximization of catalytic activity?[J]. Angew. Chem. Int. Ed., 2020, 59(43): 19129-19135.
[39] Rettenmaier C, Aran-Ais R M, Timoshenko J, Rizo R, Jeon H S, Kuhl S, Chee S W, Bergmann A, Cuenya B R. Enhanced formic acid oxidation over SnO2?decorated Pd nanocubes[J]. ACS Catal., 2020, 10(1): 14540-14551.
[40] Mondal S, Raj C R. Electrochemical dealloying-assisted surface-engineered Pd-based bifunctional electrocatalyst for formic acid oxidation and oxygen reduction[J]. ACS Appl. Mater. Interfaces, 2019, 11(15): 14110-14119.
[41] Wang W C, He T O, Yang X L, Liu Y M, Wang C Q, Li J, Xiao A D, Zhang K, Shi X T, Jin M S. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation[J]. Nano Lett., 2021, 21(8): 3458-3464.
[42] Shi W, Park A H, Xu S, Yoo P J, Kwon Y U. Continuous and conformal thin TiO2-coating on carbon support makes Pd nanoparticles highly efficient and durable electrocatalyst[J]. Appl. Catal. B-Environ., 2021, 284(5): 119715-119724.
文章导航

/