一体式可再生燃料电池双功能氧催化剂的研究进展
收稿日期: 2022-05-30
修回日期: 2022-06-29
录用日期: 2022-07-14
网络出版日期: 2022-07-20
基金资助
国家自然科学基金(21978260);国家自然科学基金(22178307)
Recent Progress of Bifunctional Electrocatalysts for Oxygen Electrodes in Unitized Regenerative Fuel Cells
Received date: 2022-05-30
Revised date: 2022-06-29
Accepted date: 2022-07-14
Online published: 2022-07-20
双功能氧催化剂的催化活性及稳定性是决定一体式可再生燃料电池能否高效运作的关键因素之一。得益于分别对于氧还原及氧析出反应特定中间产物适当的结合能,铂与铱、钌及其氧化物所制成的贵金属催化剂,常被应用于一体式可再生燃料电池中作为双功能氧催化剂。同时,近年来对于非铂族双功能氧催化剂的研究也取得了较大进展。本篇综述从一体式可再生燃料电池中氧还原及氧析出反应的作用机理出发,首先着重对传统铂基双功能催化剂的构效关系进行了总结,其次介绍了钙钛矿型、尖晶石型氧化物、非金属等新型双功能氧催化剂的发展趋势。此外,本文对于该研究领域所存在的限制条件和发展路线也进行了总结与展望。
郑天龙 , 欧明玉 , 徐松 , 毛信表 , 王释一 , 和庆钢 . 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学, 2023 , 29(7) : 2205301 . DOI: 10.13208/j.electrochem.2205301
Unitized regenerative fuel cells (URFCs), which oxidize hydrogen to water to generate electrical power under the fuel cells (FCs) mode and electrolyze water to hydrogen under the water electrolysis (WE) mode for recycling, are known as clean and sustainable energy conversion devices. In contrast to the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) on the hydrogen electrode side, the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the oxygen electrode side requires highly efficient bifunctional oxygen catalysts. Conventional precious metal catalysts combine Pt and IrO2 with excellent ORR and OER activities to achieve bifunctional electrocatalysis performance, but the scarcity and high cost of precious metals have restricted their applications. Although platinum group metal (PGM)-free bifunctional catalysts circumvent the problems of high price and scarce resources, they suffer from insufficient activity and poor stability. Therefore, much attention has been paid by researchers on developing efficient, durable and low-cost bifunctional oxygen catalysts. In this review, we mainly introduce the recent advances in bifunctional oxygen catalysts for URFCs focusing on the catalyst design, activity, and durability. First of all, the fundamental understanding of the ORR and OER mechanisms is essential prior to discussing the development of bifunctional oxygen catalysts. Starting from activity descriptor-based approaches in the identification of catalyst activity, this review summarizes the alternative catalyst design strategies confronted with the unfavorable scaling relationship existing among the binding energies of different oxygen-containing reaction intermediates during ORR and OER. Subsequently, in addition to introducing the design strategies of conventional PGM-based bifunctional catalysts, the recent progress of PGM-free bifunctional catalysts, including perovskite oxides, spinel oxides, other transition metal compounds, and carbon-based (non-metal) catalysts, is presented in terms of their structure-property relationship. Various strategies have been developed by researchers to optimize the performance of PGM-free bifunctional catalysts, such as nanostructuring, defects engineering, heteroatom doping, phase and composition modulation, support coupling and morphology engineering, etc. Some PGM-free bifunctional catalysts reported in the literature show promising ORR and OER activities superior to Pt+IrO2 in an alkaline environment. In general, although great progress has been made on PGM-free bifunctional electrocatalysts, their cycling durability is still far from that of precious metal catalysts, and few of them have been applied in acidic environments. Therefore, much more efforts are needed to improve the stability of PGM-free bifunctional catalysts. Lastly, the challenge and future development of designing optimal bifunctional oxygen catalysts are discussed.
[1] | Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity[J]. Chem. Rev., 2015, 115(9): 3433-3467. |
[2] | Xiong X L, Chen W H, Wang W, Li J, Chen S L. Pt-Pd nanodendrites as oxygen reduction catalyst in polymer-electrolyte-membrane fuel cell[J]. Int. J. Hydrog. Energy, 2017, 42(40): 25234-25243. |
[3] | Renzi M, Agostini M, Navarra M A, Nobili F. An innovative membrane-electrode assembly for efficient and durable polymer electrolyte membrane fuel cell operations[J]. Int. J. Hydrog. Energy, 2017, 42(26): 16686-16694. |
[4] | Guerrero Moreno N, Cisneros Molina M, Gervasio D, Pérez Robles J F. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost[J]. Renew. Sust. Energ. Rev., 2015, 52: 897-906. |
[5] | Ahmed F, Sutradhar S C, Ryu T, Jang H, Choi K, Yang H, Yoon S, Rahman M M, Kim W. Comparative study of sulfonated branched and linear poly(phenylene)s polymer electrolyte membranes for fuel cells[J]. Int. J. Hydrog. Energy, 2018, 43(10): 5374-5385. |
[6] | Sadhasivam T, Palanisamy G, Roh S H, Kurkuri M D, Kim S C, Jung H Y. Electro-analytical performance of bifunctional electrocatalyst materials in unitized regenerative fuel cell system[J]. Int. J. Hydrog. Energy, 2018, 43(39): 18169-18184. |
[7] | Sui S, Wang X Y, Zhou X T, Su Y H, Riffatc S, Liu C J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells[J]. J. Mater. Chem. A, 2017, 5(5): 1808-1825. |
[8] | Kulkarni A, Siahrostami S, Patel A, Norskov J K. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chem. Rev., 2018, 118(5): 2302-2312. |
[9] | Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martinez J I, Inoglu N G, Kitchin J, Jaramillo T F, Norskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165. |
[10] | Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Norskov J K. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1-2): 83-89. |
[11] | Calle-Vallejo F, Martinez J I, Rossmeisl J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions[J]. Phys. Chem. Chem. Phys., 2011, 13(34): 15639-15643. |
[12] | Fei H, Dong J, Feng Y, Allen C S, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland A I, Duan X, Huang Y. General synthesis and definitive structural identification of Mn4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nat. Catal., 2018, 1(1): 63-72. |
[13] | Doyle A D, Montoya J H, Vojvodic A. Improving oxygen electrochemistry through nanoscopic confinement[J]. ChemCatChem, 2015, 7(5): 738-742. |
[14] | Busch M, Halck N B, Kramm U I, Siahrostami S, Krtil P, Rossmeisl J. Beyond the top of the volcano? - a unified approach to electrocatalytic oxygen reduction and oxygen evolution[J]. Nano Energy, 2016, 29: 126-135. |
[15] | She S X, Zhu Y L, Chen Y B, Lu Q, Zhou W, Shao Z P. Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites[J]. Adv. Energy Mater., 2019, 9(20): 1900429. |
[16] | Halck N B, Petrykin V, Krtil P, Rossmeisl J. Beyond the volcano limitations in electrocatalysis - oxygen evolution reaction[J]. Phys. Chem. Chem. Phys., 2014, 16(27): 13682-13688. |
[17] | Wang Y F, Leung D Y C, Xuan J, Wang H Z. A review on unitized regenerative fuel cell technologies, Part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell[J]. Renew. Sust. Energ. Rev., 2017, 75: 775-795. |
[18] | Wang X Q, Li Z J, Qu Y T, Yuan T W, Wang W Y, Wu Y, Li Y D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design[J]. Chem, 2019, 5(6): 1486-1511. |
[19] | Chen G Y, Delafuente D A, Sarangapani S, Mallouk T E. Combinatorial discovery of bifunctional oxygen reduction - water oxidation electrocatalysts for regenerative fuel cells[J]. Catal. Today, 2001, 67(4): 341-355. |
[20] | da Silva G C, Fernandes M R, Ticianelli E A. Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions[J]. ACS Catal., 2018, 8(3): 2081-2092. |
[21] | Kong F D, Zhang S, Yin G P, Zhang N, Wang Z B, Du C Y. Preparation of Pt/Irx(IrO2)10-x bifunctional oxygen Catalyst for unitized regenerative fuel cell[J]. J. Power Sources, 2012, 210: 321-326. |
[22] | Zhang G, Shao Z G, Lu W T, Li G F, Liu F Q, Yi B L. One-pot synthesis of Ir@Pt nanodendrites as highly active bifunctional electrocatalysts for oxygen reduction and oxygen evolution in acidic medium[J]. Electrochem. Commun., 2012, 22: 145-148. |
[23] | Kong F D, Zhang S, Yin G P, Zhang N, Wang Z B, Du C Y. Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell[J]. Electrochem. Commun., 2012, 14(1): 63-66. |
[24] | Fang D H, Tang X J, Yang L M, Xu D Y, Zhang H J, Sun S C, Shao Z G, Yi B L. Facile synthesis of Pt-decorated Ir black as a bifunctional oxygen catalyst for oxygen reduction and evolution reactions[J]. Nanoscale, 2019, 11(18): 9091-9102. |
[25] | Gutsche C, Moeller C J, Knipper M, Borchert H, Parisi J, Plaggenborg T. Synthesis, structure, and electrochemical stability of Ir-decorated RuO2 nanoparticles and Pt nanorods as oxygen catalysts[J]. J. Phys. Chem. C, 2016, 120(2): 1137-1146. |
[26] | Won J E, Kwak D H, Han S B, Park H S, Park J Y, Ma K B, Kim D H, Park K W. PtIr/Ti4O7 as a bifunctional electrocatalyst for improved oxygen reduction and oxygen evolution reactions[J]. J. Catal., 2018, 358: 287-294. |
[27] | da Silva G C, Mayrhofer K J J, Ticianelli E A, Cherevko S. The degradation of Pt/IrOx oxygen bifunctional catalysts[J]. Electrochim. Acta, 2019, 308: 400-409. |
[28] | Chen D J, Chen C, Baiyee Z M, Shao Z P, Ciucci F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chem. Rev., 2015, 115(18): 9869-9921. |
[29] | J?rissen L. Bifunctional oxygen/air electrodes[J]. J. Power Sources, 2006, 155(1): 23-32. |
[30] | Gupta S, Kellogg W, Xu H, Liu X, Cho J, Wu G. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media[J]. Chem. Asian J., 2016, 11(1): 10-21. |
[31] | Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385. |
[32] | Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nat. Chem., 2011, 3(7): 546-550. |
[33] | Zhang D W, Song Y F, Du Z Z, Wang L, Li Y T, Goodenough J B. Active Lani1-XFexO3 bifunctional catalysts for air cathodes in alkaline media[J]. J. Mater. Chem. A, 2015, 3(18): 9421-9426. |
[34] | Lopez K, Park G, Sun H J, An J C, Eom S, Shim J. Electrochemical characterizations of LaMo3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1-xO3 (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution[J]. J. Appl. Electrochem., 2015, 45(4): 313-323. |
[35] | Grimaud A, May K J, Carlton C E, Lee Y L, Risch M, Hong W T, Zhou J, Shao-Horn Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nat. Commun., 2013, 4(1): 2439. |
[36] | Jung J I, Risch M, Park S, Kim M G, Nam G, Jeong H Y, Shao-Horn Y, Cho J. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis[J]. Energy Environ. Sci., 2016, 9(1): 176-183. |
[37] | Lee Y L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors[J]. Energy Environ. Sci., 2011, 4(10): 3966-3970. |
[38] | Tarancón A, Burriel M, Santiso J, Skinner S J, Kilner J A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J. Mater. Chem., 2010, 20(19): 3799-3813. |
[39] | Zhuang S X, Zhang H A, Liu S Q, Tu F Y, Zhang W X, Zhao C Z. Optimized perovskite electrocatalyst for bifunctional air electrode by impedance spectroscopy analysis[J]. Int. J. Electrochem. Sci., 2014, 9(4): 1690-1701. |
[40] | Soares C O, Carvalho M D, Jorge M E M, Gomes A, Silva R A, Rangel C M, Pereira M I D. High surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media[J]. J. Appl. Electrochem., 2012, 42(5): 325-332. |
[41] | Takeguchi T, Yamanaka T, Takahashi H, Watanabe H, Kuroki T, Nakanishi H, Orikasa Y, Uchimoto Y, Takano H, Ohguri N, Matsuda M, Murota T, Uosaki K, Ueda W. Layered perovskite oxide: A reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries[J]. J. Am. Chem. Soc., 2013, 135(30): 11125-11130. |
[42] | Wei C, Feng Z, Scherer G G, Barber J, Shao-Horn Y, Xu Z J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels[J]. Adv. Mater., 2017, 29(23): 1606800. |
[43] | Hu Y, Chen H Q, Zhang X M, Wen W, He Q G, He C H. Systematic study of the electronic, carbon, and N-doping effects of comn-oxide composites as bifunctional oxygen electrocatalysts[J]. J. Phys. Chem. C, 2019, 123(36): 22130-22138. |
[44] | Li AL, Kong S, Guo C X, Ooka H, Adachi K, Hashizume D, Jiang Q K, Han H X, Xiao J P, Nakamura R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid[J]. Nat. Catal., 2022, 5(2): 109-118. |
[45] | Zhou Y, Sun S, Song J, Xi S, Chen B, Du Y, Fisher A C, Cheng F, Wang X, Zhang H, Xu Z J. Enlarged CoO covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction[J]. Adv. Mater., 2018, 30(32): e1802912. |
[46] | Cheng F Y, Shen J A, Peng B, Pan Y D, Tao Z L, Chen J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat. Chem., 2011, 3(1): 79-84. |
[47] | Serov A, Andersen N I, Roy A J, Matanovic I, Artyushkova K, Atanassov P. CuCo2O4 ORR/OER bi-functional catalyst: influence of synthetic approach on performance[J]. J. Electrochem. Soc., 2015, 162(4): F449-F454. |
[48] | Sa Y J, Kwon K, Cheon J Y, Kleitz F, Joo S H. Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts[J]. J. Mater. Chem. A, 2013, 1(34): 9992-10001. |
[49] | Menezes P W, Indra A, Gonzalez-Flores D, Sahraie N R, Zaharieva I, Schwarze M, Strasser P, Dau H, Driess M. High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: Morphology-dependent activity[J]. ACS Catal., 2015, 5(4): 2017-2027. |
[50] | Liu W J, Bao J, Xu L, Guan M L, Wang Z L, Qiu J X, Huang Y P, Xia J X, Lei Y C, Li H M. NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery[J]. Appl. Surf. Sci., 2019, 478: 552-559. |
[51] | Ge X, Liu Y, Goh F W T, Hor T S A, Zong Y, Xiao P, Zhang Z, Lim S H, Li B, Wang X, Liu Z. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution[J]. ACS Appl. Mater. Interfaces, 2014, 6(15): 12684-12691. |
[52] | Xu Y, Bian W, Wu J, Tian J H, Yang R. Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe2O4 hollow nanospheres as efficient catalyst for oxygen reduction reaction and oxygen evolution reaction[J]. Electrochim. Acta, 2015, 151: 276-283. |
[53] | Fu Y, Yu H Y, Jiang C, Zhang T H, Zhan R, Li X, Li J F, Tian J H, Yang R. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst[J]. Adv. Funct. Mater., 2018, 28(9): 1705094. |
[54] | Fu G T, Cui Z M, Chen Y F, Xu L, Tang Y W, Goodenough J B. Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery[J]. Nano Energy, 2017, 39: 77-85. |
[55] | Fu J, Hassan F M, Zhong C, Lu J, Liu H, Yu A P, Chen Z W. Defect engineering of chalcogen-tailored oxygen electrocatalysts for rechargeable quasi-solid-state zinc-air batteries[J]. Adv. Mater., 2017, 29(35): 1702526. |
[56] | Wang Q, Shang L, Shi R, Zhang X, Zhao Y, Waterhouse G I N, Wu L Z, Tung C H, Zhang T. NiFe layered double hydroxide nanoparticles on Co,N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries[J]. Adv. Energy Mater., 2017, 7(21): 1700467. |
[57] | An L, Li Y, Luo M, Yin J, Zhao Y Q, Xu C, Cheng F, Yang Y, Xi P, Guo S. Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries[J]. Adv. Funct. Mater., 2017, 27(42): 1703779. |
[58] | Patel P P, Datta M K, Velikokhatnyi O I, Kuruba R, Damodaran K, Jampani P, Gattu B, Shanthi P M, Damle S S, Kumta P N. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts[J]. Sci. Rep., 2016, 6(1): 28367. |
[59] | Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849. |
[60] | Xiao M L, Gao L Q, Wang Y, Wang X, Zhu J B, Jin Z, Liu C P, Chen H Q, Li G R, Ge J J, He Q G, Wu Z J, Chen Z W, Xing W. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. J. Am. Chem. Soc., 2019, 141(50): 19800-19806. |
[61] | Xiao Y, Tang L. High-throughput approach exploitation: Two-dimensional double-metal sulfide (M2S2) of efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Energy Fuels, 2020, 34(4): 5006-5015. |
[62] | Haber J A, Cai Y, Jung S, Xiang C, Mitrovic S, Jin J, Bell A T, Gregoire J M. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis[J]. Energy Environ. Sci., 2014, 7(2): 682-688. |
[63] | Liu J Y, Liu H, Chen H J, Du X W, Zhang B, Hong Z L, Sun S H, Wang W C. Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach[J]. Adv. Sci., 2020, 7(1): 1901614. |
[64] | Dai L, Xue Y, Qu L, Choi H J, Baek J B. Metal-free catalysts for oxygen reduction reaction[J]. Chem. Rev., 2015, 115(11): 4823-4892. |
[65] | Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P. Heteroatom-doped graphene materials: Syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098. |
[66] | He J, Zheng T L, Wu D J, Zhang S M, Gu M, He Q G. Insights into the determining effect of carbon support properties on anchoring active sites in Fe-N-C catalysts toward the oxygen reduction reaction[J]. ACS Catal., 2022, 12(3): 1601-1613. |
[67] | Liu X, Dai L M. Carbon-based metal-free catalysts[J]. Nat. Rev. Mater., 2016, 1(11): 16064. |
[68] | Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao S Z. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small, 2012, 8(23): 3550-3566. |
[69] | Zhang S G, Tsuzuki S, Ueno K, Dokko K, Watanabe M. Upper limit of nitrogen content in carbon materials[J]. Angew. Chem. Int. Edit., 2015, 54(4): 1302-1306. |
[70] | Niu W H, Li Z, Marcus K, Zhou L, Li Y L, Ye R Q, Liang K, Yang Y. surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries[J]. Adv. Energy Mater., 2018, 8(1): 1701642. |
[71] | El-Sawy A M, Mosa I M, Su D, Guild C J, Khalid S, Joesten R, Rusling J F, Suib S L. Controlling the active sites of sulfur-doped carbon nanotube-graphene nanolobes for highly efficient oxygen evolution and reduction catalysis[J]. Adv. Energy Mater., 2016, 6(5): 1501966. |
[72] | Lei W, Deng Y P, Li G R, Cano Z P, Wang X L, Luo D, Liu Y S, Wang D L, Chen Z W. Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries[J]. ACS Catal., 2018, 8(3): 2464-2472. |
[73] | Patil I M, Lokanathan M, Ganesan B, Swami A, Kakade B. Carbon nanotube/boron nitride nanocomposite as a significant bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Chemistry, 2017, 23(3): 676-683. |
[74] | Zhang J T, Zhao Z H, Xia Z H, Dai L M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nat. Nanotechnol., 2015, 10(5): 444-452. |
[75] | Chai G L, Qiu K P, Qiao M, Titirici M M, Shang C X, Guo Z X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N Co-doped graphene frameworks[J]. Energy Environ. Sci., 2017, 10(5): 1186-1195. |
[76] | Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries[J]. Adv. Mater., 2015, 27(43): 6834-6840. |
[77] | Hang C, Zhang J, Zhu J W, Li W Q, Kou Z K, Huang Y H. In situ exfoliating and generating active sites on graphene nanosheets strongly coupled with carbon fiber toward self-standing bifunctional cathode for rechargeable Zn-air batteries[J]. Adv. Energy Mater., 2018, 8(16): 1703539. |
[78] | Shinde S S, Lee C H, Sami A, Kim D H, Lee S U, Lee J H. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries[J]. ACS Nano, 2017, 11(1): 347-357. |
[79] | Wang H F, Tang C, Wang B, Li B Q, Cui X Y, Zhang Q. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc-air batteries[J]. Energy Storage Mater., 2018, 15: 124-130. |
[80] | Tang C, Zhang Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects[J]. Adv. Mater., 2017, 29(13): 1604103. |
[81] | Tang C, Wang H F, Chen X, Li B Q, Hou T Z, Zhang B, Zhang Q, Titirici M M, Wei F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis[J]. Adv. Mater., 2016, 28(32): 6845-6851. |
[82] | Bajdich M, Garcia-Mota M, Vojvodic A, Norskov J K, Bell A T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water[J]. J. Am. Chem. Soc., 2013, 135(36): 13521-13530. |
[83] | Diaz-Morales O, Ledezma-Yanez I, Koper M T M, Calle-Vallejo F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction[J]. ACS Catal., 2015, 5(9): 5380-5387. |
[84] | Fan K, Chen H, Ji Y F, Huang H, Claesson P M, Daniel Q, Philippe B, Rensmo H, Li F S, Luo Y, Sun L C. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation[J]. Nat. Commun., 2016, 7(1): 11981. |
[85] | Jiang J, Sun F F, Zhou S, Hu W, Zhang H, Dong J C, Jiang Z, Zhao J J, Li J F, Yan W S, Wang M. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium Co-doped nickel (Oxy)hydroxide[J]. Nat. Commun., 2018, 9(1): 2885. |
[86] | Liao P, Keith J A, Carter E A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis[J]. J. Am. Chem. Soc., 2012, 134(32): 13296-13309. |
[87] | Ye S H, Shi Z X, Feng J X, Tong Y X, Li G R. Activating coooh porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(10): 2672-2676. |
[88] | Kuznetsov D A, Han B, Yu Y, Rao R R, Hwang J, Roman-Leshkov Y, Shao-Horn Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis[J]. Joule, 2018, 2(2): 225-244. |
[89] | Chen D, Qiao M, Lu Y R, Hao L, Liu D, Dong C L, Li Y, Wang S. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(28): 8691-8696. |
[90] | Ling T, Yan D Y, Jiao Y, Wang H, Zheng Y, Zheng X, Mao J, Du X W, Hu Z, Jaroniec M, Qiao S Z. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis[J]. Nat. Commun., 2016, 7(1): 12876. |
[91] | Nguyen T, Piccinin S, Seriani N, Gebauer R. Photo-oxidation of water on defective hematite(0001)[J]. ACS Catal., 2015, 5(2): 715-721. |
[92] | Niether C, Faure S, Bordet A, Deseure J, Chatenet M, Carrey J, Chaudret B, Rouet A. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles[J]. Nat. Energy, 2018, 3(6): 476-483. |
[93] | Guo C, Zheng Y, Ran J, Xie F, Jaroniec M, Qiao S Z. Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis[J]. Angew. Chem. Int. Ed., 2017, 56(29): 8539-8543. |
[94] | Ng J W D, Garcia-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo T F. Gold-supported cerium-doped niox catalysts for water oxidation[J]. Nat. Energy, 2016, 1(5): 16053. |
[95] | Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014. |
[96] | Wang J, Li K, Zhong H X, Xu D, Wang Z L, Jiang Z, Wu Z J, Zhang X B. Synergistic effect between metal-nitrogen-carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance[J]. Angew. Chem. Int. Ed., 2015, 54(36): 10530-10534. |
/
〈 |
|
〉 |